Formatted *.c files

feat/start
hheik 2024-04-29 22:15:43 +03:00
parent f5b93ef12f
commit 8102452c7f
45 changed files with 6910 additions and 7633 deletions

4
.clang-format Normal file
View File

@ -0,0 +1,4 @@
SortIncludes: Never
UseTab: Always
IndentWidth: 4
TabWidth: 4

View File

@ -13,7 +13,6 @@
// * Only one process at a time can use a buffer,
// so do not keep them longer than necessary.
#include "types.h"
#include "param.h"
#include "spinlock.h"
@ -24,130 +23,116 @@
#include "buf.h"
struct {
struct spinlock lock;
struct buf buf[NBUF];
struct spinlock lock;
struct buf buf[NBUF];
// Linked list of all buffers, through prev/next.
// Sorted by how recently the buffer was used.
// head.next is most recent, head.prev is least.
struct buf head;
// Linked list of all buffers, through prev/next.
// Sorted by how recently the buffer was used.
// head.next is most recent, head.prev is least.
struct buf head;
} bcache;
void
binit(void)
{
struct buf *b;
void binit(void) {
struct buf *b;
initlock(&bcache.lock, "bcache");
initlock(&bcache.lock, "bcache");
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for(b = bcache.buf; b < bcache.buf+NBUF; b++){
b->next = bcache.head.next;
b->prev = &bcache.head;
initsleeplock(&b->lock, "buffer");
bcache.head.next->prev = b;
bcache.head.next = b;
}
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for (b = bcache.buf; b < bcache.buf + NBUF; b++) {
b->next = bcache.head.next;
b->prev = &bcache.head;
initsleeplock(&b->lock, "buffer");
bcache.head.next->prev = b;
bcache.head.next = b;
}
}
// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return locked buffer.
static struct buf*
bget(uint dev, uint blockno)
{
struct buf *b;
static struct buf *bget(uint dev, uint blockno) {
struct buf *b;
acquire(&bcache.lock);
acquire(&bcache.lock);
// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
b->refcnt++;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
// Is the block already cached?
for (b = bcache.head.next; b != &bcache.head; b = b->next) {
if (b->dev == dev && b->blockno == blockno) {
b->refcnt++;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
// Not cached.
// Recycle the least recently used (LRU) unused buffer.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if(b->refcnt == 0) {
b->dev = dev;
b->blockno = blockno;
b->valid = 0;
b->refcnt = 1;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
panic("bget: no buffers");
// Not cached.
// Recycle the least recently used (LRU) unused buffer.
for (b = bcache.head.prev; b != &bcache.head; b = b->prev) {
if (b->refcnt == 0) {
b->dev = dev;
b->blockno = blockno;
b->valid = 0;
b->refcnt = 1;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
panic("bget: no buffers");
}
// Return a locked buf with the contents of the indicated block.
struct buf*
bread(uint dev, uint blockno)
{
struct buf *b;
struct buf *bread(uint dev, uint blockno) {
struct buf *b;
b = bget(dev, blockno);
if(!b->valid) {
virtio_disk_rw(b, 0);
b->valid = 1;
}
return b;
b = bget(dev, blockno);
if (!b->valid) {
virtio_disk_rw(b, 0);
b->valid = 1;
}
return b;
}
// Write b's contents to disk. Must be locked.
void
bwrite(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("bwrite");
virtio_disk_rw(b, 1);
void bwrite(struct buf *b) {
if (!holdingsleep(&b->lock))
panic("bwrite");
virtio_disk_rw(b, 1);
}
// Release a locked buffer.
// Move to the head of the most-recently-used list.
void
brelse(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("brelse");
void brelse(struct buf *b) {
if (!holdingsleep(&b->lock))
panic("brelse");
releasesleep(&b->lock);
releasesleep(&b->lock);
acquire(&bcache.lock);
b->refcnt--;
if (b->refcnt == 0) {
// no one is waiting for it.
b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;
}
release(&bcache.lock);
acquire(&bcache.lock);
b->refcnt--;
if (b->refcnt == 0) {
// no one is waiting for it.
b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;
}
release(&bcache.lock);
}
void
bpin(struct buf *b) {
acquire(&bcache.lock);
b->refcnt++;
release(&bcache.lock);
void bpin(struct buf *b) {
acquire(&bcache.lock);
b->refcnt++;
release(&bcache.lock);
}
void
bunpin(struct buf *b) {
acquire(&bcache.lock);
b->refcnt--;
release(&bcache.lock);
void bunpin(struct buf *b) {
acquire(&bcache.lock);
b->refcnt--;
release(&bcache.lock);
}

View File

@ -23,51 +23,49 @@
#include "proc.h"
#define BACKSPACE 0x100
#define C(x) ((x)-'@') // Control-x
#define C(x) ((x) - '@') // Control-x
//
// send one character to the uart.
// called by printf(), and to echo input characters,
// but not from write().
//
void
consputc(int c)
{
if(c == BACKSPACE){
// if the user typed backspace, overwrite with a space.
uartputc_sync('\b'); uartputc_sync(' '); uartputc_sync('\b');
} else {
uartputc_sync(c);
}
void consputc(int c) {
if (c == BACKSPACE) {
// if the user typed backspace, overwrite with a space.
uartputc_sync('\b');
uartputc_sync(' ');
uartputc_sync('\b');
} else {
uartputc_sync(c);
}
}
struct {
struct spinlock lock;
// input
struct spinlock lock;
// input
#define INPUT_BUF_SIZE 128
char buf[INPUT_BUF_SIZE];
uint r; // Read index
uint w; // Write index
uint e; // Edit index
char buf[INPUT_BUF_SIZE];
uint r; // Read index
uint w; // Write index
uint e; // Edit index
} cons;
//
// user write()s to the console go here.
//
int
consolewrite(int user_src, uint64 src, int n)
{
int i;
int consolewrite(int user_src, uint64 src, int n) {
int i;
for(i = 0; i < n; i++){
char c;
if(either_copyin(&c, user_src, src+i, 1) == -1)
break;
uartputc(c);
}
for (i = 0; i < n; i++) {
char c;
if (either_copyin(&c, user_src, src + i, 1) == -1)
break;
uartputc(c);
}
return i;
return i;
}
//
@ -76,54 +74,52 @@ consolewrite(int user_src, uint64 src, int n)
// user_dist indicates whether dst is a user
// or kernel address.
//
int
consoleread(int user_dst, uint64 dst, int n)
{
uint target;
int c;
char cbuf;
int consoleread(int user_dst, uint64 dst, int n) {
uint target;
int c;
char cbuf;
target = n;
acquire(&cons.lock);
while(n > 0){
// wait until interrupt handler has put some
// input into cons.buffer.
while(cons.r == cons.w){
if(killed(myproc())){
release(&cons.lock);
return -1;
}
sleep(&cons.r, &cons.lock);
}
target = n;
acquire(&cons.lock);
while (n > 0) {
// wait until interrupt handler has put some
// input into cons.buffer.
while (cons.r == cons.w) {
if (killed(myproc())) {
release(&cons.lock);
return -1;
}
sleep(&cons.r, &cons.lock);
}
c = cons.buf[cons.r++ % INPUT_BUF_SIZE];
c = cons.buf[cons.r++ % INPUT_BUF_SIZE];
if(c == C('D')){ // end-of-file
if(n < target){
// Save ^D for next time, to make sure
// caller gets a 0-byte result.
cons.r--;
}
break;
}
if (c == C('D')) { // end-of-file
if (n < target) {
// Save ^D for next time, to make sure
// caller gets a 0-byte result.
cons.r--;
}
break;
}
// copy the input byte to the user-space buffer.
cbuf = c;
if(either_copyout(user_dst, dst, &cbuf, 1) == -1)
break;
// copy the input byte to the user-space buffer.
cbuf = c;
if (either_copyout(user_dst, dst, &cbuf, 1) == -1)
break;
dst++;
--n;
dst++;
--n;
if(c == '\n'){
// a whole line has arrived, return to
// the user-level read().
break;
}
}
release(&cons.lock);
if (c == '\n') {
// a whole line has arrived, return to
// the user-level read().
break;
}
}
release(&cons.lock);
return target - n;
return target - n;
}
//
@ -132,61 +128,57 @@ consoleread(int user_dst, uint64 dst, int n)
// do erase/kill processing, append to cons.buf,
// wake up consoleread() if a whole line has arrived.
//
void
consoleintr(int c)
{
acquire(&cons.lock);
void consoleintr(int c) {
acquire(&cons.lock);
switch(c){
case C('P'): // Print process list.
procdump();
break;
case C('U'): // Kill line.
while(cons.e != cons.w &&
cons.buf[(cons.e-1) % INPUT_BUF_SIZE] != '\n'){
cons.e--;
consputc(BACKSPACE);
}
break;
case C('H'): // Backspace
case '\x7f': // Delete key
if(cons.e != cons.w){
cons.e--;
consputc(BACKSPACE);
}
break;
default:
if(c != 0 && cons.e-cons.r < INPUT_BUF_SIZE){
c = (c == '\r') ? '\n' : c;
switch (c) {
case C('P'): // Print process list.
procdump();
break;
case C('U'): // Kill line.
while (cons.e != cons.w &&
cons.buf[(cons.e - 1) % INPUT_BUF_SIZE] != '\n') {
cons.e--;
consputc(BACKSPACE);
}
break;
case C('H'): // Backspace
case '\x7f': // Delete key
if (cons.e != cons.w) {
cons.e--;
consputc(BACKSPACE);
}
break;
default:
if (c != 0 && cons.e - cons.r < INPUT_BUF_SIZE) {
c = (c == '\r') ? '\n' : c;
// echo back to the user.
consputc(c);
// echo back to the user.
consputc(c);
// store for consumption by consoleread().
cons.buf[cons.e++ % INPUT_BUF_SIZE] = c;
// store for consumption by consoleread().
cons.buf[cons.e++ % INPUT_BUF_SIZE] = c;
if(c == '\n' || c == C('D') || cons.e-cons.r == INPUT_BUF_SIZE){
// wake up consoleread() if a whole line (or end-of-file)
// has arrived.
cons.w = cons.e;
wakeup(&cons.r);
}
}
break;
}
release(&cons.lock);
if (c == '\n' || c == C('D') || cons.e - cons.r == INPUT_BUF_SIZE) {
// wake up consoleread() if a whole line (or end-of-file)
// has arrived.
cons.w = cons.e;
wakeup(&cons.r);
}
}
break;
}
release(&cons.lock);
}
void
consoleinit(void)
{
initlock(&cons.lock, "cons");
void consoleinit(void) {
initlock(&cons.lock, "cons");
uartinit();
uartinit();
// connect read and write system calls
// to consoleread and consolewrite.
devsw[CONSOLE].read = consoleread;
devsw[CONSOLE].write = consolewrite;
// connect read and write system calls
// to consoleread and consolewrite.
devsw[CONSOLE].read = consoleread;
devsw[CONSOLE].write = consolewrite;
}

View File

@ -9,158 +9,155 @@
static int loadseg(pde_t *, uint64, struct inode *, uint, uint);
int flags2perm(int flags)
{
int perm = 0;
if(flags & 0x1)
perm = PTE_X;
if(flags & 0x2)
perm |= PTE_W;
return perm;
int flags2perm(int flags) {
int perm = 0;
if (flags & 0x1)
perm = PTE_X;
if (flags & 0x2)
perm |= PTE_W;
return perm;
}
int
exec(char *path, char **argv)
{
char *s, *last;
int i, off;
uint64 argc, sz = 0, sp, ustack[MAXARG], stackbase;
struct elfhdr elf;
struct inode *ip;
struct proghdr ph;
pagetable_t pagetable = 0, oldpagetable;
struct proc *p = myproc();
int exec(char *path, char **argv) {
char *s, *last;
int i, off;
uint64 argc, sz = 0, sp, ustack[MAXARG], stackbase;
struct elfhdr elf;
struct inode *ip;
struct proghdr ph;
pagetable_t pagetable = 0, oldpagetable;
struct proc *p = myproc();
begin_op();
begin_op();
if((ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if ((ip = namei(path)) == 0) {
end_op();
return -1;
}
ilock(ip);
// Check ELF header
if(readi(ip, 0, (uint64)&elf, 0, sizeof(elf)) != sizeof(elf))
goto bad;
// Check ELF header
if (readi(ip, 0, (uint64)&elf, 0, sizeof(elf)) != sizeof(elf))
goto bad;
if(elf.magic != ELF_MAGIC)
goto bad;
if (elf.magic != ELF_MAGIC)
goto bad;
if((pagetable = proc_pagetable(p)) == 0)
goto bad;
if ((pagetable = proc_pagetable(p)) == 0)
goto bad;
// Load program into memory.
for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
if(readi(ip, 0, (uint64)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad;
if(ph.type != ELF_PROG_LOAD)
continue;
if(ph.memsz < ph.filesz)
goto bad;
if(ph.vaddr + ph.memsz < ph.vaddr)
goto bad;
if(ph.vaddr % PGSIZE != 0)
goto bad;
uint64 sz1;
if((sz1 = uvmalloc(pagetable, sz, ph.vaddr + ph.memsz, flags2perm(ph.flags))) == 0)
goto bad;
sz = sz1;
if(loadseg(pagetable, ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;
}
iunlockput(ip);
end_op();
ip = 0;
// Load program into memory.
for (i = 0, off = elf.phoff; i < elf.phnum; i++, off += sizeof(ph)) {
if (readi(ip, 0, (uint64)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad;
if (ph.type != ELF_PROG_LOAD)
continue;
if (ph.memsz < ph.filesz)
goto bad;
if (ph.vaddr + ph.memsz < ph.vaddr)
goto bad;
if (ph.vaddr % PGSIZE != 0)
goto bad;
uint64 sz1;
if ((sz1 = uvmalloc(pagetable, sz, ph.vaddr + ph.memsz,
flags2perm(ph.flags))) == 0)
goto bad;
sz = sz1;
if (loadseg(pagetable, ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;
}
iunlockput(ip);
end_op();
ip = 0;
p = myproc();
uint64 oldsz = p->sz;
p = myproc();
uint64 oldsz = p->sz;
// Allocate two pages at the next page boundary.
// Make the first inaccessible as a stack guard.
// Use the second as the user stack.
sz = PGROUNDUP(sz);
uint64 sz1;
if((sz1 = uvmalloc(pagetable, sz, sz + 2*PGSIZE, PTE_W)) == 0)
goto bad;
sz = sz1;
uvmclear(pagetable, sz-2*PGSIZE);
sp = sz;
stackbase = sp - PGSIZE;
// Allocate two pages at the next page boundary.
// Make the first inaccessible as a stack guard.
// Use the second as the user stack.
sz = PGROUNDUP(sz);
uint64 sz1;
if ((sz1 = uvmalloc(pagetable, sz, sz + 2 * PGSIZE, PTE_W)) == 0)
goto bad;
sz = sz1;
uvmclear(pagetable, sz - 2 * PGSIZE);
sp = sz;
stackbase = sp - PGSIZE;
// Push argument strings, prepare rest of stack in ustack.
for(argc = 0; argv[argc]; argc++) {
if(argc >= MAXARG)
goto bad;
sp -= strlen(argv[argc]) + 1;
sp -= sp % 16; // riscv sp must be 16-byte aligned
if(sp < stackbase)
goto bad;
if(copyout(pagetable, sp, argv[argc], strlen(argv[argc]) + 1) < 0)
goto bad;
ustack[argc] = sp;
}
ustack[argc] = 0;
// Push argument strings, prepare rest of stack in ustack.
for (argc = 0; argv[argc]; argc++) {
if (argc >= MAXARG)
goto bad;
sp -= strlen(argv[argc]) + 1;
sp -= sp % 16; // riscv sp must be 16-byte aligned
if (sp < stackbase)
goto bad;
if (copyout(pagetable, sp, argv[argc], strlen(argv[argc]) + 1) < 0)
goto bad;
ustack[argc] = sp;
}
ustack[argc] = 0;
// push the array of argv[] pointers.
sp -= (argc+1) * sizeof(uint64);
sp -= sp % 16;
if(sp < stackbase)
goto bad;
if(copyout(pagetable, sp, (char *)ustack, (argc+1)*sizeof(uint64)) < 0)
goto bad;
// push the array of argv[] pointers.
sp -= (argc + 1) * sizeof(uint64);
sp -= sp % 16;
if (sp < stackbase)
goto bad;
if (copyout(pagetable, sp, (char *)ustack, (argc + 1) * sizeof(uint64)) < 0)
goto bad;
// arguments to user main(argc, argv)
// argc is returned via the system call return
// value, which goes in a0.
p->trapframe->a1 = sp;
// arguments to user main(argc, argv)
// argc is returned via the system call return
// value, which goes in a0.
p->trapframe->a1 = sp;
// Save program name for debugging.
for(last=s=path; *s; s++)
if(*s == '/')
last = s+1;
safestrcpy(p->name, last, sizeof(p->name));
// Commit to the user image.
oldpagetable = p->pagetable;
p->pagetable = pagetable;
p->sz = sz;
p->trapframe->epc = elf.entry; // initial program counter = main
p->trapframe->sp = sp; // initial stack pointer
proc_freepagetable(oldpagetable, oldsz);
// Save program name for debugging.
for (last = s = path; *s; s++)
if (*s == '/')
last = s + 1;
safestrcpy(p->name, last, sizeof(p->name));
return argc; // this ends up in a0, the first argument to main(argc, argv)
// Commit to the user image.
oldpagetable = p->pagetable;
p->pagetable = pagetable;
p->sz = sz;
p->trapframe->epc = elf.entry; // initial program counter = main
p->trapframe->sp = sp; // initial stack pointer
proc_freepagetable(oldpagetable, oldsz);
bad:
if(pagetable)
proc_freepagetable(pagetable, sz);
if(ip){
iunlockput(ip);
end_op();
}
return -1;
return argc; // this ends up in a0, the first argument to main(argc, argv)
bad:
if (pagetable)
proc_freepagetable(pagetable, sz);
if (ip) {
iunlockput(ip);
end_op();
}
return -1;
}
// Load a program segment into pagetable at virtual address va.
// va must be page-aligned
// and the pages from va to va+sz must already be mapped.
// Returns 0 on success, -1 on failure.
static int
loadseg(pagetable_t pagetable, uint64 va, struct inode *ip, uint offset, uint sz)
{
uint i, n;
uint64 pa;
static int loadseg(pagetable_t pagetable, uint64 va, struct inode *ip,
uint offset, uint sz) {
uint i, n;
uint64 pa;
for(i = 0; i < sz; i += PGSIZE){
pa = walkaddr(pagetable, va + i);
if(pa == 0)
panic("loadseg: address should exist");
if(sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, 0, (uint64)pa, offset+i, n) != n)
return -1;
}
return 0;
for (i = 0; i < sz; i += PGSIZE) {
pa = walkaddr(pagetable, va + i);
if (pa == 0)
panic("loadseg: address should exist");
if (sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if (readi(ip, 0, (uint64)pa, offset + i, n) != n)
return -1;
}
return 0;
}

View File

@ -15,168 +15,151 @@
struct devsw devsw[NDEV];
struct {
struct spinlock lock;
struct file file[NFILE];
struct spinlock lock;
struct file file[NFILE];
} ftable;
void
fileinit(void)
{
initlock(&ftable.lock, "ftable");
}
void fileinit(void) { initlock(&ftable.lock, "ftable"); }
// Allocate a file structure.
struct file*
filealloc(void)
{
struct file *f;
struct file *filealloc(void) {
struct file *f;
acquire(&ftable.lock);
for(f = ftable.file; f < ftable.file + NFILE; f++){
if(f->ref == 0){
f->ref = 1;
release(&ftable.lock);
return f;
}
}
release(&ftable.lock);
return 0;
acquire(&ftable.lock);
for (f = ftable.file; f < ftable.file + NFILE; f++) {
if (f->ref == 0) {
f->ref = 1;
release(&ftable.lock);
return f;
}
}
release(&ftable.lock);
return 0;
}
// Increment ref count for file f.
struct file*
filedup(struct file *f)
{
acquire(&ftable.lock);
if(f->ref < 1)
panic("filedup");
f->ref++;
release(&ftable.lock);
return f;
struct file *filedup(struct file *f) {
acquire(&ftable.lock);
if (f->ref < 1)
panic("filedup");
f->ref++;
release(&ftable.lock);
return f;
}
// Close file f. (Decrement ref count, close when reaches 0.)
void
fileclose(struct file *f)
{
struct file ff;
void fileclose(struct file *f) {
struct file ff;
acquire(&ftable.lock);
if(f->ref < 1)
panic("fileclose");
if(--f->ref > 0){
release(&ftable.lock);
return;
}
ff = *f;
f->ref = 0;
f->type = FD_NONE;
release(&ftable.lock);
acquire(&ftable.lock);
if (f->ref < 1)
panic("fileclose");
if (--f->ref > 0) {
release(&ftable.lock);
return;
}
ff = *f;
f->ref = 0;
f->type = FD_NONE;
release(&ftable.lock);
if(ff.type == FD_PIPE){
pipeclose(ff.pipe, ff.writable);
} else if(ff.type == FD_INODE || ff.type == FD_DEVICE){
begin_op();
iput(ff.ip);
end_op();
}
if (ff.type == FD_PIPE) {
pipeclose(ff.pipe, ff.writable);
} else if (ff.type == FD_INODE || ff.type == FD_DEVICE) {
begin_op();
iput(ff.ip);
end_op();
}
}
// Get metadata about file f.
// addr is a user virtual address, pointing to a struct stat.
int
filestat(struct file *f, uint64 addr)
{
struct proc *p = myproc();
struct stat st;
if(f->type == FD_INODE || f->type == FD_DEVICE){
ilock(f->ip);
stati(f->ip, &st);
iunlock(f->ip);
if(copyout(p->pagetable, addr, (char *)&st, sizeof(st)) < 0)
return -1;
return 0;
}
return -1;
int filestat(struct file *f, uint64 addr) {
struct proc *p = myproc();
struct stat st;
if (f->type == FD_INODE || f->type == FD_DEVICE) {
ilock(f->ip);
stati(f->ip, &st);
iunlock(f->ip);
if (copyout(p->pagetable, addr, (char *)&st, sizeof(st)) < 0)
return -1;
return 0;
}
return -1;
}
// Read from file f.
// addr is a user virtual address.
int
fileread(struct file *f, uint64 addr, int n)
{
int r = 0;
int fileread(struct file *f, uint64 addr, int n) {
int r = 0;
if(f->readable == 0)
return -1;
if (f->readable == 0)
return -1;
if(f->type == FD_PIPE){
r = piperead(f->pipe, addr, n);
} else if(f->type == FD_DEVICE){
if(f->major < 0 || f->major >= NDEV || !devsw[f->major].read)
return -1;
r = devsw[f->major].read(1, addr, n);
} else if(f->type == FD_INODE){
ilock(f->ip);
if((r = readi(f->ip, 1, addr, f->off, n)) > 0)
f->off += r;
iunlock(f->ip);
} else {
panic("fileread");
}
if (f->type == FD_PIPE) {
r = piperead(f->pipe, addr, n);
} else if (f->type == FD_DEVICE) {
if (f->major < 0 || f->major >= NDEV || !devsw[f->major].read)
return -1;
r = devsw[f->major].read(1, addr, n);
} else if (f->type == FD_INODE) {
ilock(f->ip);
if ((r = readi(f->ip, 1, addr, f->off, n)) > 0)
f->off += r;
iunlock(f->ip);
} else {
panic("fileread");
}
return r;
return r;
}
// Write to file f.
// addr is a user virtual address.
int
filewrite(struct file *f, uint64 addr, int n)
{
int r, ret = 0;
int filewrite(struct file *f, uint64 addr, int n) {
int r, ret = 0;
if(f->writable == 0)
return -1;
if (f->writable == 0)
return -1;
if(f->type == FD_PIPE){
ret = pipewrite(f->pipe, addr, n);
} else if(f->type == FD_DEVICE){
if(f->major < 0 || f->major >= NDEV || !devsw[f->major].write)
return -1;
ret = devsw[f->major].write(1, addr, n);
} else if(f->type == FD_INODE){
// write a few blocks at a time to avoid exceeding
// the maximum log transaction size, including
// i-node, indirect block, allocation blocks,
// and 2 blocks of slop for non-aligned writes.
// this really belongs lower down, since writei()
// might be writing a device like the console.
int max = ((MAXOPBLOCKS-1-1-2) / 2) * BSIZE;
int i = 0;
while(i < n){
int n1 = n - i;
if(n1 > max)
n1 = max;
if (f->type == FD_PIPE) {
ret = pipewrite(f->pipe, addr, n);
} else if (f->type == FD_DEVICE) {
if (f->major < 0 || f->major >= NDEV || !devsw[f->major].write)
return -1;
ret = devsw[f->major].write(1, addr, n);
} else if (f->type == FD_INODE) {
// write a few blocks at a time to avoid exceeding
// the maximum log transaction size, including
// i-node, indirect block, allocation blocks,
// and 2 blocks of slop for non-aligned writes.
// this really belongs lower down, since writei()
// might be writing a device like the console.
int max = ((MAXOPBLOCKS - 1 - 1 - 2) / 2) * BSIZE;
int i = 0;
while (i < n) {
int n1 = n - i;
if (n1 > max)
n1 = max;
begin_op();
ilock(f->ip);
if ((r = writei(f->ip, 1, addr + i, f->off, n1)) > 0)
f->off += r;
iunlock(f->ip);
end_op();
begin_op();
ilock(f->ip);
if ((r = writei(f->ip, 1, addr + i, f->off, n1)) > 0)
f->off += r;
iunlock(f->ip);
end_op();
if(r != n1){
// error from writei
break;
}
i += r;
}
ret = (i == n ? n : -1);
} else {
panic("filewrite");
}
if (r != n1) {
// error from writei
break;
}
i += r;
}
ret = (i == n ? n : -1);
} else {
panic("filewrite");
}
return ret;
return ret;
}

View File

@ -24,84 +24,75 @@
#define min(a, b) ((a) < (b) ? (a) : (b))
// there should be one superblock per disk device, but we run with
// only one device
struct superblock sb;
struct superblock sb;
// Read the super block.
static void
readsb(int dev, struct superblock *sb)
{
struct buf *bp;
static void readsb(int dev, struct superblock *sb) {
struct buf *bp;
bp = bread(dev, 1);
memmove(sb, bp->data, sizeof(*sb));
brelse(bp);
bp = bread(dev, 1);
memmove(sb, bp->data, sizeof(*sb));
brelse(bp);
}
// Init fs
void
fsinit(int dev) {
readsb(dev, &sb);
if(sb.magic != FSMAGIC)
panic("invalid file system");
initlog(dev, &sb);
void fsinit(int dev) {
readsb(dev, &sb);
if (sb.magic != FSMAGIC)
panic("invalid file system");
initlog(dev, &sb);
}
// Zero a block.
static void
bzero(int dev, int bno)
{
struct buf *bp;
static void bzero(int dev, int bno) {
struct buf *bp;
bp = bread(dev, bno);
memset(bp->data, 0, BSIZE);
log_write(bp);
brelse(bp);
bp = bread(dev, bno);
memset(bp->data, 0, BSIZE);
log_write(bp);
brelse(bp);
}
// Blocks.
// Allocate a zeroed disk block.
// returns 0 if out of disk space.
static uint
balloc(uint dev)
{
int b, bi, m;
struct buf *bp;
static uint balloc(uint dev) {
int b, bi, m;
struct buf *bp;
bp = 0;
for(b = 0; b < sb.size; b += BPB){
bp = bread(dev, BBLOCK(b, sb));
for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0){ // Is block free?
bp->data[bi/8] |= m; // Mark block in use.
log_write(bp);
brelse(bp);
bzero(dev, b + bi);
return b + bi;
}
}
brelse(bp);
}
printf("balloc: out of blocks\n");
return 0;
bp = 0;
for (b = 0; b < sb.size; b += BPB) {
bp = bread(dev, BBLOCK(b, sb));
for (bi = 0; bi < BPB && b + bi < sb.size; bi++) {
m = 1 << (bi % 8);
if ((bp->data[bi / 8] & m) == 0) { // Is block free?
bp->data[bi / 8] |= m; // Mark block in use.
log_write(bp);
brelse(bp);
bzero(dev, b + bi);
return b + bi;
}
}
brelse(bp);
}
printf("balloc: out of blocks\n");
return 0;
}
// Free a disk block.
static void
bfree(int dev, uint b)
{
struct buf *bp;
int bi, m;
static void bfree(int dev, uint b) {
struct buf *bp;
int bi, m;
bp = bread(dev, BBLOCK(b, sb));
bi = b % BPB;
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0)
panic("freeing free block");
bp->data[bi/8] &= ~m;
log_write(bp);
brelse(bp);
bp = bread(dev, BBLOCK(b, sb));
bi = b % BPB;
m = 1 << (bi % 8);
if ((bp->data[bi / 8] & m) == 0)
panic("freeing free block");
bp->data[bi / 8] &= ~m;
log_write(bp);
brelse(bp);
}
// Inodes.
@ -174,156 +165,142 @@ bfree(int dev, uint b)
// read or write that inode's ip->valid, ip->size, ip->type, &c.
struct {
struct spinlock lock;
struct inode inode[NINODE];
struct spinlock lock;
struct inode inode[NINODE];
} itable;
void
iinit()
{
int i = 0;
initlock(&itable.lock, "itable");
for(i = 0; i < NINODE; i++) {
initsleeplock(&itable.inode[i].lock, "inode");
}
void iinit() {
int i = 0;
initlock(&itable.lock, "itable");
for (i = 0; i < NINODE; i++) {
initsleeplock(&itable.inode[i].lock, "inode");
}
}
static struct inode* iget(uint dev, uint inum);
static struct inode *iget(uint dev, uint inum);
// Allocate an inode on device dev.
// Mark it as allocated by giving it type type.
// Returns an unlocked but allocated and referenced inode,
// or NULL if there is no free inode.
struct inode*
ialloc(uint dev, short type)
{
int inum;
struct buf *bp;
struct dinode *dip;
struct inode *ialloc(uint dev, short type) {
int inum;
struct buf *bp;
struct dinode *dip;
for(inum = 1; inum < sb.ninodes; inum++){
bp = bread(dev, IBLOCK(inum, sb));
dip = (struct dinode*)bp->data + inum%IPB;
if(dip->type == 0){ // a free inode
memset(dip, 0, sizeof(*dip));
dip->type = type;
log_write(bp); // mark it allocated on the disk
brelse(bp);
return iget(dev, inum);
}
brelse(bp);
}
printf("ialloc: no inodes\n");
return 0;
for (inum = 1; inum < sb.ninodes; inum++) {
bp = bread(dev, IBLOCK(inum, sb));
dip = (struct dinode *)bp->data + inum % IPB;
if (dip->type == 0) { // a free inode
memset(dip, 0, sizeof(*dip));
dip->type = type;
log_write(bp); // mark it allocated on the disk
brelse(bp);
return iget(dev, inum);
}
brelse(bp);
}
printf("ialloc: no inodes\n");
return 0;
}
// Copy a modified in-memory inode to disk.
// Must be called after every change to an ip->xxx field
// that lives on disk.
// Caller must hold ip->lock.
void
iupdate(struct inode *ip)
{
struct buf *bp;
struct dinode *dip;
void iupdate(struct inode *ip) {
struct buf *bp;
struct dinode *dip;
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
dip->type = ip->type;
dip->major = ip->major;
dip->minor = ip->minor;
dip->nlink = ip->nlink;
dip->size = ip->size;
memmove(dip->addrs, ip->addrs, sizeof(ip->addrs));
log_write(bp);
brelse(bp);
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode *)bp->data + ip->inum % IPB;
dip->type = ip->type;
dip->major = ip->major;
dip->minor = ip->minor;
dip->nlink = ip->nlink;
dip->size = ip->size;
memmove(dip->addrs, ip->addrs, sizeof(ip->addrs));
log_write(bp);
brelse(bp);
}
// Find the inode with number inum on device dev
// and return the in-memory copy. Does not lock
// the inode and does not read it from disk.
static struct inode*
iget(uint dev, uint inum)
{
struct inode *ip, *empty;
static struct inode *iget(uint dev, uint inum) {
struct inode *ip, *empty;
acquire(&itable.lock);
acquire(&itable.lock);
// Is the inode already in the table?
empty = 0;
for(ip = &itable.inode[0]; ip < &itable.inode[NINODE]; ip++){
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){
ip->ref++;
release(&itable.lock);
return ip;
}
if(empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
}
// Is the inode already in the table?
empty = 0;
for (ip = &itable.inode[0]; ip < &itable.inode[NINODE]; ip++) {
if (ip->ref > 0 && ip->dev == dev && ip->inum == inum) {
ip->ref++;
release(&itable.lock);
return ip;
}
if (empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
}
// Recycle an inode entry.
if(empty == 0)
panic("iget: no inodes");
// Recycle an inode entry.
if (empty == 0)
panic("iget: no inodes");
ip = empty;
ip->dev = dev;
ip->inum = inum;
ip->ref = 1;
ip->valid = 0;
release(&itable.lock);
ip = empty;
ip->dev = dev;
ip->inum = inum;
ip->ref = 1;
ip->valid = 0;
release(&itable.lock);
return ip;
return ip;
}
// Increment reference count for ip.
// Returns ip to enable ip = idup(ip1) idiom.
struct inode*
idup(struct inode *ip)
{
acquire(&itable.lock);
ip->ref++;
release(&itable.lock);
return ip;
struct inode *idup(struct inode *ip) {
acquire(&itable.lock);
ip->ref++;
release(&itable.lock);
return ip;
}
// Lock the given inode.
// Reads the inode from disk if necessary.
void
ilock(struct inode *ip)
{
struct buf *bp;
struct dinode *dip;
void ilock(struct inode *ip) {
struct buf *bp;
struct dinode *dip;
if(ip == 0 || ip->ref < 1)
panic("ilock");
if (ip == 0 || ip->ref < 1)
panic("ilock");
acquiresleep(&ip->lock);
acquiresleep(&ip->lock);
if(ip->valid == 0){
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
ip->type = dip->type;
ip->major = dip->major;
ip->minor = dip->minor;
ip->nlink = dip->nlink;
ip->size = dip->size;
memmove(ip->addrs, dip->addrs, sizeof(ip->addrs));
brelse(bp);
ip->valid = 1;
if(ip->type == 0)
panic("ilock: no type");
}
if (ip->valid == 0) {
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode *)bp->data + ip->inum % IPB;
ip->type = dip->type;
ip->major = dip->major;
ip->minor = dip->minor;
ip->nlink = dip->nlink;
ip->size = dip->size;
memmove(ip->addrs, dip->addrs, sizeof(ip->addrs));
brelse(bp);
ip->valid = 1;
if (ip->type == 0)
panic("ilock: no type");
}
}
// Unlock the given inode.
void
iunlock(struct inode *ip)
{
if(ip == 0 || !holdingsleep(&ip->lock) || ip->ref < 1)
panic("iunlock");
void iunlock(struct inode *ip) {
if (ip == 0 || !holdingsleep(&ip->lock) || ip->ref < 1)
panic("iunlock");
releasesleep(&ip->lock);
releasesleep(&ip->lock);
}
// Drop a reference to an in-memory inode.
@ -333,40 +310,36 @@ iunlock(struct inode *ip)
// to it, free the inode (and its content) on disk.
// All calls to iput() must be inside a transaction in
// case it has to free the inode.
void
iput(struct inode *ip)
{
acquire(&itable.lock);
void iput(struct inode *ip) {
acquire(&itable.lock);
if(ip->ref == 1 && ip->valid && ip->nlink == 0){
// inode has no links and no other references: truncate and free.
if (ip->ref == 1 && ip->valid && ip->nlink == 0) {
// inode has no links and no other references: truncate and free.
// ip->ref == 1 means no other process can have ip locked,
// so this acquiresleep() won't block (or deadlock).
acquiresleep(&ip->lock);
// ip->ref == 1 means no other process can have ip locked,
// so this acquiresleep() won't block (or deadlock).
acquiresleep(&ip->lock);
release(&itable.lock);
release(&itable.lock);
itrunc(ip);
ip->type = 0;
iupdate(ip);
ip->valid = 0;
itrunc(ip);
ip->type = 0;
iupdate(ip);
ip->valid = 0;
releasesleep(&ip->lock);
releasesleep(&ip->lock);
acquire(&itable.lock);
}
acquire(&itable.lock);
}
ip->ref--;
release(&itable.lock);
ip->ref--;
release(&itable.lock);
}
// Common idiom: unlock, then put.
void
iunlockput(struct inode *ip)
{
iunlock(ip);
iput(ip);
void iunlockput(struct inode *ip) {
iunlock(ip);
iput(ip);
}
// Inode content
@ -379,120 +352,112 @@ iunlockput(struct inode *ip)
// Return the disk block address of the nth block in inode ip.
// If there is no such block, bmap allocates one.
// returns 0 if out of disk space.
static uint
bmap(struct inode *ip, uint bn)
{
uint addr, *a;
struct buf *bp;
static uint bmap(struct inode *ip, uint bn) {
uint addr, *a;
struct buf *bp;
if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0){
addr = balloc(ip->dev);
if(addr == 0)
return 0;
ip->addrs[bn] = addr;
}
return addr;
}
bn -= NDIRECT;
if (bn < NDIRECT) {
if ((addr = ip->addrs[bn]) == 0) {
addr = balloc(ip->dev);
if (addr == 0)
return 0;
ip->addrs[bn] = addr;
}
return addr;
}
bn -= NDIRECT;
if(bn < NINDIRECT){
// Load indirect block, allocating if necessary.
if((addr = ip->addrs[NDIRECT]) == 0){
addr = balloc(ip->dev);
if(addr == 0)
return 0;
ip->addrs[NDIRECT] = addr;
}
bp = bread(ip->dev, addr);
a = (uint*)bp->data;
if((addr = a[bn]) == 0){
addr = balloc(ip->dev);
if(addr){
a[bn] = addr;
log_write(bp);
}
}
brelse(bp);
return addr;
}
if (bn < NINDIRECT) {
// Load indirect block, allocating if necessary.
if ((addr = ip->addrs[NDIRECT]) == 0) {
addr = balloc(ip->dev);
if (addr == 0)
return 0;
ip->addrs[NDIRECT] = addr;
}
bp = bread(ip->dev, addr);
a = (uint *)bp->data;
if ((addr = a[bn]) == 0) {
addr = balloc(ip->dev);
if (addr) {
a[bn] = addr;
log_write(bp);
}
}
brelse(bp);
return addr;
}
panic("bmap: out of range");
panic("bmap: out of range");
}
// Truncate inode (discard contents).
// Caller must hold ip->lock.
void
itrunc(struct inode *ip)
{
int i, j;
struct buf *bp;
uint *a;
void itrunc(struct inode *ip) {
int i, j;
struct buf *bp;
uint *a;
for(i = 0; i < NDIRECT; i++){
if(ip->addrs[i]){
bfree(ip->dev, ip->addrs[i]);
ip->addrs[i] = 0;
}
}
for (i = 0; i < NDIRECT; i++) {
if (ip->addrs[i]) {
bfree(ip->dev, ip->addrs[i]);
ip->addrs[i] = 0;
}
}
if(ip->addrs[NDIRECT]){
bp = bread(ip->dev, ip->addrs[NDIRECT]);
a = (uint*)bp->data;
for(j = 0; j < NINDIRECT; j++){
if(a[j])
bfree(ip->dev, a[j]);
}
brelse(bp);
bfree(ip->dev, ip->addrs[NDIRECT]);
ip->addrs[NDIRECT] = 0;
}
if (ip->addrs[NDIRECT]) {
bp = bread(ip->dev, ip->addrs[NDIRECT]);
a = (uint *)bp->data;
for (j = 0; j < NINDIRECT; j++) {
if (a[j])
bfree(ip->dev, a[j]);
}
brelse(bp);
bfree(ip->dev, ip->addrs[NDIRECT]);
ip->addrs[NDIRECT] = 0;
}
ip->size = 0;
iupdate(ip);
ip->size = 0;
iupdate(ip);
}
// Copy stat information from inode.
// Caller must hold ip->lock.
void
stati(struct inode *ip, struct stat *st)
{
st->dev = ip->dev;
st->ino = ip->inum;
st->type = ip->type;
st->nlink = ip->nlink;
st->size = ip->size;
void stati(struct inode *ip, struct stat *st) {
st->dev = ip->dev;
st->ino = ip->inum;
st->type = ip->type;
st->nlink = ip->nlink;
st->size = ip->size;
}
// Read data from inode.
// Caller must hold ip->lock.
// If user_dst==1, then dst is a user virtual address;
// otherwise, dst is a kernel address.
int
readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n)
{
uint tot, m;
struct buf *bp;
int readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n) {
uint tot, m;
struct buf *bp;
if(off > ip->size || off + n < off)
return 0;
if(off + n > ip->size)
n = ip->size - off;
if (off > ip->size || off + n < off)
return 0;
if (off + n > ip->size)
n = ip->size - off;
for(tot=0; tot<n; tot+=m, off+=m, dst+=m){
uint addr = bmap(ip, off/BSIZE);
if(addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off%BSIZE);
if(either_copyout(user_dst, dst, bp->data + (off % BSIZE), m) == -1) {
brelse(bp);
tot = -1;
break;
}
brelse(bp);
}
return tot;
for (tot = 0; tot < n; tot += m, off += m, dst += m) {
uint addr = bmap(ip, off / BSIZE);
if (addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off % BSIZE);
if (either_copyout(user_dst, dst, bp->data + (off % BSIZE), m) == -1) {
brelse(bp);
tot = -1;
break;
}
brelse(bp);
}
return tot;
}
// Write data to inode.
@ -502,107 +467,97 @@ readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n)
// Returns the number of bytes successfully written.
// If the return value is less than the requested n,
// there was an error of some kind.
int
writei(struct inode *ip, int user_src, uint64 src, uint off, uint n)
{
uint tot, m;
struct buf *bp;
int writei(struct inode *ip, int user_src, uint64 src, uint off, uint n) {
uint tot, m;
struct buf *bp;
if(off > ip->size || off + n < off)
return -1;
if(off + n > MAXFILE*BSIZE)
return -1;
if (off > ip->size || off + n < off)
return -1;
if (off + n > MAXFILE * BSIZE)
return -1;
for(tot=0; tot<n; tot+=m, off+=m, src+=m){
uint addr = bmap(ip, off/BSIZE);
if(addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off%BSIZE);
if(either_copyin(bp->data + (off % BSIZE), user_src, src, m) == -1) {
brelse(bp);
break;
}
log_write(bp);
brelse(bp);
}
for (tot = 0; tot < n; tot += m, off += m, src += m) {
uint addr = bmap(ip, off / BSIZE);
if (addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off % BSIZE);
if (either_copyin(bp->data + (off % BSIZE), user_src, src, m) == -1) {
brelse(bp);
break;
}
log_write(bp);
brelse(bp);
}
if(off > ip->size)
ip->size = off;
if (off > ip->size)
ip->size = off;
// write the i-node back to disk even if the size didn't change
// because the loop above might have called bmap() and added a new
// block to ip->addrs[].
iupdate(ip);
// write the i-node back to disk even if the size didn't change
// because the loop above might have called bmap() and added a new
// block to ip->addrs[].
iupdate(ip);
return tot;
return tot;
}
// Directories
int
namecmp(const char *s, const char *t)
{
return strncmp(s, t, DIRSIZ);
}
int namecmp(const char *s, const char *t) { return strncmp(s, t, DIRSIZ); }
// Look for a directory entry in a directory.
// If found, set *poff to byte offset of entry.
struct inode*
dirlookup(struct inode *dp, char *name, uint *poff)
{
uint off, inum;
struct dirent de;
struct inode *dirlookup(struct inode *dp, char *name, uint *poff) {
uint off, inum;
struct dirent de;
if(dp->type != T_DIR)
panic("dirlookup not DIR");
if (dp->type != T_DIR)
panic("dirlookup not DIR");
for(off = 0; off < dp->size; off += sizeof(de)){
if(readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlookup read");
if(de.inum == 0)
continue;
if(namecmp(name, de.name) == 0){
// entry matches path element
if(poff)
*poff = off;
inum = de.inum;
return iget(dp->dev, inum);
}
}
for (off = 0; off < dp->size; off += sizeof(de)) {
if (readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlookup read");
if (de.inum == 0)
continue;
if (namecmp(name, de.name) == 0) {
// entry matches path element
if (poff)
*poff = off;
inum = de.inum;
return iget(dp->dev, inum);
}
}
return 0;
return 0;
}
// Write a new directory entry (name, inum) into the directory dp.
// Returns 0 on success, -1 on failure (e.g. out of disk blocks).
int
dirlink(struct inode *dp, char *name, uint inum)
{
int off;
struct dirent de;
struct inode *ip;
int dirlink(struct inode *dp, char *name, uint inum) {
int off;
struct dirent de;
struct inode *ip;
// Check that name is not present.
if((ip = dirlookup(dp, name, 0)) != 0){
iput(ip);
return -1;
}
// Check that name is not present.
if ((ip = dirlookup(dp, name, 0)) != 0) {
iput(ip);
return -1;
}
// Look for an empty dirent.
for(off = 0; off < dp->size; off += sizeof(de)){
if(readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlink read");
if(de.inum == 0)
break;
}
// Look for an empty dirent.
for (off = 0; off < dp->size; off += sizeof(de)) {
if (readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlink read");
if (de.inum == 0)
break;
}
strncpy(de.name, name, DIRSIZ);
de.inum = inum;
if(writei(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
return -1;
strncpy(de.name, name, DIRSIZ);
de.inum = inum;
if (writei(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
return -1;
return 0;
return 0;
}
// Paths
@ -619,79 +574,71 @@ dirlink(struct inode *dp, char *name, uint inum)
// skipelem("a", name) = "", setting name = "a"
// skipelem("", name) = skipelem("////", name) = 0
//
static char*
skipelem(char *path, char *name)
{
char *s;
int len;
static char *skipelem(char *path, char *name) {
char *s;
int len;
while(*path == '/')
path++;
if(*path == 0)
return 0;
s = path;
while(*path != '/' && *path != 0)
path++;
len = path - s;
if(len >= DIRSIZ)
memmove(name, s, DIRSIZ);
else {
memmove(name, s, len);
name[len] = 0;
}
while(*path == '/')
path++;
return path;
while (*path == '/')
path++;
if (*path == 0)
return 0;
s = path;
while (*path != '/' && *path != 0)
path++;
len = path - s;
if (len >= DIRSIZ)
memmove(name, s, DIRSIZ);
else {
memmove(name, s, len);
name[len] = 0;
}
while (*path == '/')
path++;
return path;
}
// Look up and return the inode for a path name.
// If parent != 0, return the inode for the parent and copy the final
// path element into name, which must have room for DIRSIZ bytes.
// Must be called inside a transaction since it calls iput().
static struct inode*
namex(char *path, int nameiparent, char *name)
{
struct inode *ip, *next;
static struct inode *namex(char *path, int nameiparent, char *name) {
struct inode *ip, *next;
if(*path == '/')
ip = iget(ROOTDEV, ROOTINO);
else
ip = idup(myproc()->cwd);
if (*path == '/')
ip = iget(ROOTDEV, ROOTINO);
else
ip = idup(myproc()->cwd);
while((path = skipelem(path, name)) != 0){
ilock(ip);
if(ip->type != T_DIR){
iunlockput(ip);
return 0;
}
if(nameiparent && *path == '\0'){
// Stop one level early.
iunlock(ip);
return ip;
}
if((next = dirlookup(ip, name, 0)) == 0){
iunlockput(ip);
return 0;
}
iunlockput(ip);
ip = next;
}
if(nameiparent){
iput(ip);
return 0;
}
return ip;
while ((path = skipelem(path, name)) != 0) {
ilock(ip);
if (ip->type != T_DIR) {
iunlockput(ip);
return 0;
}
if (nameiparent && *path == '\0') {
// Stop one level early.
iunlock(ip);
return ip;
}
if ((next = dirlookup(ip, name, 0)) == 0) {
iunlockput(ip);
return 0;
}
iunlockput(ip);
ip = next;
}
if (nameiparent) {
iput(ip);
return 0;
}
return ip;
}
struct inode*
namei(char *path)
{
char name[DIRSIZ];
return namex(path, 0, name);
struct inode *namei(char *path) {
char name[DIRSIZ];
return namex(path, 0, name);
}
struct inode*
nameiparent(char *path, char *name)
{
return namex(path, 1, name);
struct inode *nameiparent(char *path, char *name) {
return namex(path, 1, name);
}

View File

@ -12,71 +12,63 @@
void freerange(void *pa_start, void *pa_end);
extern char end[]; // first address after kernel.
// defined by kernel.ld.
// defined by kernel.ld.
struct run {
struct run *next;
struct run *next;
};
struct {
struct spinlock lock;
struct run *freelist;
struct spinlock lock;
struct run *freelist;
} kmem;
void
kinit()
{
initlock(&kmem.lock, "kmem");
freerange(end, (void*)PHYSTOP);
void kinit() {
initlock(&kmem.lock, "kmem");
freerange(end, (void *)PHYSTOP);
}
void
freerange(void *pa_start, void *pa_end)
{
char *p;
p = (char*)PGROUNDUP((uint64)pa_start);
for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE)
kfree(p);
void freerange(void *pa_start, void *pa_end) {
char *p;
p = (char *)PGROUNDUP((uint64)pa_start);
for (; p + PGSIZE <= (char *)pa_end; p += PGSIZE)
kfree(p);
}
// Free the page of physical memory pointed at by pa,
// which normally should have been returned by a
// call to kalloc(). (The exception is when
// initializing the allocator; see kinit above.)
void
kfree(void *pa)
{
struct run *r;
void kfree(void *pa) {
struct run *r;
if(((uint64)pa % PGSIZE) != 0 || (char*)pa < end || (uint64)pa >= PHYSTOP)
panic("kfree");
if (((uint64)pa % PGSIZE) != 0 || (char *)pa < end || (uint64)pa >= PHYSTOP)
panic("kfree");
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);
r = (struct run*)pa;
r = (struct run *)pa;
acquire(&kmem.lock);
r->next = kmem.freelist;
kmem.freelist = r;
release(&kmem.lock);
acquire(&kmem.lock);
r->next = kmem.freelist;
kmem.freelist = r;
release(&kmem.lock);
}
// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated.
void *
kalloc(void)
{
struct run *r;
void *kalloc(void) {
struct run *r;
acquire(&kmem.lock);
r = kmem.freelist;
if(r)
kmem.freelist = r->next;
release(&kmem.lock);
acquire(&kmem.lock);
r = kmem.freelist;
if (r)
kmem.freelist = r->next;
release(&kmem.lock);
if(r)
memset((char*)r, 5, PGSIZE); // fill with junk
return (void*)r;
if (r)
memset((char *)r, 5, PGSIZE); // fill with junk
return (void *)r;
}

View File

@ -33,173 +33,156 @@
// Contents of the header block, used for both the on-disk header block
// and to keep track in memory of logged block# before commit.
struct logheader {
int n;
int block[LOGSIZE];
int n;
int block[LOGSIZE];
};
struct log {
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit(), please wait.
int dev;
struct logheader lh;
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit(), please wait.
int dev;
struct logheader lh;
};
struct log log;
static void recover_from_log(void);
static void commit();
void
initlog(int dev, struct superblock *sb)
{
if (sizeof(struct logheader) >= BSIZE)
panic("initlog: too big logheader");
void initlog(int dev, struct superblock *sb) {
if (sizeof(struct logheader) >= BSIZE)
panic("initlog: too big logheader");
initlock(&log.lock, "log");
log.start = sb->logstart;
log.size = sb->nlog;
log.dev = dev;
recover_from_log();
initlock(&log.lock, "log");
log.start = sb->logstart;
log.size = sb->nlog;
log.dev = dev;
recover_from_log();
}
// Copy committed blocks from log to their home location
static void
install_trans(int recovering)
{
int tail;
static void install_trans(int recovering) {
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+1); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
if(recovering == 0)
bunpin(dbuf);
brelse(lbuf);
brelse(dbuf);
}
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf =
bread(log.dev, log.start + tail + 1); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
if (recovering == 0)
bunpin(dbuf);
brelse(lbuf);
brelse(dbuf);
}
}
// Read the log header from disk into the in-memory log header
static void
read_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *lh = (struct logheader *) (buf->data);
int i;
log.lh.n = lh->n;
for (i = 0; i < log.lh.n; i++) {
log.lh.block[i] = lh->block[i];
}
brelse(buf);
static void read_head(void) {
struct buf *buf = bread(log.dev, log.start);
struct logheader *lh = (struct logheader *)(buf->data);
int i;
log.lh.n = lh->n;
for (i = 0; i < log.lh.n; i++) {
log.lh.block[i] = lh->block[i];
}
brelse(buf);
}
// Write in-memory log header to disk.
// This is the true point at which the
// current transaction commits.
static void
write_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *) (buf->data);
int i;
hb->n = log.lh.n;
for (i = 0; i < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite(buf);
brelse(buf);
static void write_head(void) {
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *)(buf->data);
int i;
hb->n = log.lh.n;
for (i = 0; i < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite(buf);
brelse(buf);
}
static void
recover_from_log(void)
{
read_head();
install_trans(1); // if committed, copy from log to disk
log.lh.n = 0;
write_head(); // clear the log
static void recover_from_log(void) {
read_head();
install_trans(1); // if committed, copy from log to disk
log.lh.n = 0;
write_head(); // clear the log
}
// called at the start of each FS system call.
void
begin_op(void)
{
acquire(&log.lock);
while(1){
if(log.committing){
sleep(&log, &log.lock);
} else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);
} else {
log.outstanding += 1;
release(&log.lock);
break;
}
}
void begin_op(void) {
acquire(&log.lock);
while (1) {
if (log.committing) {
sleep(&log, &log.lock);
} else if (log.lh.n + (log.outstanding + 1) * MAXOPBLOCKS > LOGSIZE) {
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);
} else {
log.outstanding += 1;
release(&log.lock);
break;
}
}
}
// called at the end of each FS system call.
// commits if this was the last outstanding operation.
void
end_op(void)
{
int do_commit = 0;
void end_op(void) {
int do_commit = 0;
acquire(&log.lock);
log.outstanding -= 1;
if(log.committing)
panic("log.committing");
if(log.outstanding == 0){
do_commit = 1;
log.committing = 1;
} else {
// begin_op() may be waiting for log space,
// and decrementing log.outstanding has decreased
// the amount of reserved space.
wakeup(&log);
}
release(&log.lock);
acquire(&log.lock);
log.outstanding -= 1;
if (log.committing)
panic("log.committing");
if (log.outstanding == 0) {
do_commit = 1;
log.committing = 1;
} else {
// begin_op() may be waiting for log space,
// and decrementing log.outstanding has decreased
// the amount of reserved space.
wakeup(&log);
}
release(&log.lock);
if(do_commit){
// call commit w/o holding locks, since not allowed
// to sleep with locks.
commit();
acquire(&log.lock);
log.committing = 0;
wakeup(&log);
release(&log.lock);
}
if (do_commit) {
// call commit w/o holding locks, since not allowed
// to sleep with locks.
commit();
acquire(&log.lock);
log.committing = 0;
wakeup(&log);
release(&log.lock);
}
}
// Copy modified blocks from cache to log.
static void
write_log(void)
{
int tail;
static void write_log(void) {
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+1); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove(to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse(from);
brelse(to);
}
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start + tail + 1); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove(to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse(from);
brelse(to);
}
}
static void
commit()
{
if (log.lh.n > 0) {
write_log(); // Write modified blocks from cache to log
write_head(); // Write header to disk -- the real commit
install_trans(0); // Now install writes to home locations
log.lh.n = 0;
write_head(); // Erase the transaction from the log
}
static void commit() {
if (log.lh.n > 0) {
write_log(); // Write modified blocks from cache to log
write_head(); // Write header to disk -- the real commit
install_trans(0); // Now install writes to home locations
log.lh.n = 0;
write_head(); // Erase the transaction from the log
}
}
// Caller has modified b->data and is done with the buffer.
@ -211,26 +194,23 @@ commit()
// modify bp->data[]
// log_write(bp)
// brelse(bp)
void
log_write(struct buf *b)
{
int i;
void log_write(struct buf *b) {
int i;
acquire(&log.lock);
if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");
if (log.outstanding < 1)
panic("log_write outside of trans");
acquire(&log.lock);
if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");
if (log.outstanding < 1)
panic("log_write outside of trans");
for (i = 0; i < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorption
break;
}
log.lh.block[i] = b->blockno;
if (i == log.lh.n) { // Add new block to log?
bpin(b);
log.lh.n++;
}
release(&log.lock);
for (i = 0; i < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorption
break;
}
log.lh.block[i] = b->blockno;
if (i == log.lh.n) { // Add new block to log?
bpin(b);
log.lh.n++;
}
release(&log.lock);
}

View File

@ -7,39 +7,38 @@
volatile static int started = 0;
// start() jumps here in supervisor mode on all CPUs.
void
main()
{
if(cpuid() == 0){
consoleinit();
printfinit();
printf("\n");
printf("xv6 kernel is booting\n");
printf("\n");
kinit(); // physical page allocator
kvminit(); // create kernel page table
kvminithart(); // turn on paging
procinit(); // process table
trapinit(); // trap vectors
trapinithart(); // install kernel trap vector
plicinit(); // set up interrupt controller
plicinithart(); // ask PLIC for device interrupts
binit(); // buffer cache
iinit(); // inode table
fileinit(); // file table
virtio_disk_init(); // emulated hard disk
userinit(); // first user process
__sync_synchronize();
started = 1;
} else {
while(started == 0)
;
__sync_synchronize();
printf("hart %d starting\n", cpuid());
kvminithart(); // turn on paging
trapinithart(); // install kernel trap vector
plicinithart(); // ask PLIC for device interrupts
}
void main() {
if (cpuid() == 0) {
consoleinit();
printfinit();
printf("\n");
printf("xv6 kernel is booting\n");
// printf("rustlib: add(1, 2) = %d\n", add(1, 2));
printf("\n");
kinit(); // physical page allocator
kvminit(); // create kernel page table
kvminithart(); // turn on paging
procinit(); // process table
trapinit(); // trap vectors
trapinithart(); // install kernel trap vector
plicinit(); // set up interrupt controller
plicinithart(); // ask PLIC for device interrupts
binit(); // buffer cache
iinit(); // inode table
fileinit(); // file table
virtio_disk_init(); // emulated hard disk
userinit(); // first user process
__sync_synchronize();
started = 1;
} else {
while (started == 0)
;
__sync_synchronize();
printf("hart %d starting\n", cpuid());
kvminithart(); // turn on paging
trapinithart(); // install kernel trap vector
plicinithart(); // ask PLIC for device interrupts
}
scheduler();
scheduler();
}

View File

@ -11,120 +11,112 @@
#define PIPESIZE 512
struct pipe {
struct spinlock lock;
char data[PIPESIZE];
uint nread; // number of bytes read
uint nwrite; // number of bytes written
int readopen; // read fd is still open
int writeopen; // write fd is still open
struct spinlock lock;
char data[PIPESIZE];
uint nread; // number of bytes read
uint nwrite; // number of bytes written
int readopen; // read fd is still open
int writeopen; // write fd is still open
};
int
pipealloc(struct file **f0, struct file **f1)
{
struct pipe *pi;
int pipealloc(struct file **f0, struct file **f1) {
struct pipe *pi;
pi = 0;
*f0 = *f1 = 0;
if((*f0 = filealloc()) == 0 || (*f1 = filealloc()) == 0)
goto bad;
if((pi = (struct pipe*)kalloc()) == 0)
goto bad;
pi->readopen = 1;
pi->writeopen = 1;
pi->nwrite = 0;
pi->nread = 0;
initlock(&pi->lock, "pipe");
(*f0)->type = FD_PIPE;
(*f0)->readable = 1;
(*f0)->writable = 0;
(*f0)->pipe = pi;
(*f1)->type = FD_PIPE;
(*f1)->readable = 0;
(*f1)->writable = 1;
(*f1)->pipe = pi;
return 0;
pi = 0;
*f0 = *f1 = 0;
if ((*f0 = filealloc()) == 0 || (*f1 = filealloc()) == 0)
goto bad;
if ((pi = (struct pipe *)kalloc()) == 0)
goto bad;
pi->readopen = 1;
pi->writeopen = 1;
pi->nwrite = 0;
pi->nread = 0;
initlock(&pi->lock, "pipe");
(*f0)->type = FD_PIPE;
(*f0)->readable = 1;
(*f0)->writable = 0;
(*f0)->pipe = pi;
(*f1)->type = FD_PIPE;
(*f1)->readable = 0;
(*f1)->writable = 1;
(*f1)->pipe = pi;
return 0;
bad:
if(pi)
kfree((char*)pi);
if(*f0)
fileclose(*f0);
if(*f1)
fileclose(*f1);
return -1;
bad:
if (pi)
kfree((char *)pi);
if (*f0)
fileclose(*f0);
if (*f1)
fileclose(*f1);
return -1;
}
void
pipeclose(struct pipe *pi, int writable)
{
acquire(&pi->lock);
if(writable){
pi->writeopen = 0;
wakeup(&pi->nread);
} else {
pi->readopen = 0;
wakeup(&pi->nwrite);
}
if(pi->readopen == 0 && pi->writeopen == 0){
release(&pi->lock);
kfree((char*)pi);
} else
release(&pi->lock);
void pipeclose(struct pipe *pi, int writable) {
acquire(&pi->lock);
if (writable) {
pi->writeopen = 0;
wakeup(&pi->nread);
} else {
pi->readopen = 0;
wakeup(&pi->nwrite);
}
if (pi->readopen == 0 && pi->writeopen == 0) {
release(&pi->lock);
kfree((char *)pi);
} else
release(&pi->lock);
}
int
pipewrite(struct pipe *pi, uint64 addr, int n)
{
int i = 0;
struct proc *pr = myproc();
int pipewrite(struct pipe *pi, uint64 addr, int n) {
int i = 0;
struct proc *pr = myproc();
acquire(&pi->lock);
while(i < n){
if(pi->readopen == 0 || killed(pr)){
release(&pi->lock);
return -1;
}
if(pi->nwrite == pi->nread + PIPESIZE){ //DOC: pipewrite-full
wakeup(&pi->nread);
sleep(&pi->nwrite, &pi->lock);
} else {
char ch;
if(copyin(pr->pagetable, &ch, addr + i, 1) == -1)
break;
pi->data[pi->nwrite++ % PIPESIZE] = ch;
i++;
}
}
wakeup(&pi->nread);
release(&pi->lock);
acquire(&pi->lock);
while (i < n) {
if (pi->readopen == 0 || killed(pr)) {
release(&pi->lock);
return -1;
}
if (pi->nwrite == pi->nread + PIPESIZE) { // DOC: pipewrite-full
wakeup(&pi->nread);
sleep(&pi->nwrite, &pi->lock);
} else {
char ch;
if (copyin(pr->pagetable, &ch, addr + i, 1) == -1)
break;
pi->data[pi->nwrite++ % PIPESIZE] = ch;
i++;
}
}
wakeup(&pi->nread);
release(&pi->lock);
return i;
return i;
}
int
piperead(struct pipe *pi, uint64 addr, int n)
{
int i;
struct proc *pr = myproc();
char ch;
int piperead(struct pipe *pi, uint64 addr, int n) {
int i;
struct proc *pr = myproc();
char ch;
acquire(&pi->lock);
while(pi->nread == pi->nwrite && pi->writeopen){ //DOC: pipe-empty
if(killed(pr)){
release(&pi->lock);
return -1;
}
sleep(&pi->nread, &pi->lock); //DOC: piperead-sleep
}
for(i = 0; i < n; i++){ //DOC: piperead-copy
if(pi->nread == pi->nwrite)
break;
ch = pi->data[pi->nread++ % PIPESIZE];
if(copyout(pr->pagetable, addr + i, &ch, 1) == -1)
break;
}
wakeup(&pi->nwrite); //DOC: piperead-wakeup
release(&pi->lock);
return i;
acquire(&pi->lock);
while (pi->nread == pi->nwrite && pi->writeopen) { // DOC: pipe-empty
if (killed(pr)) {
release(&pi->lock);
return -1;
}
sleep(&pi->nread, &pi->lock); // DOC: piperead-sleep
}
for (i = 0; i < n; i++) { // DOC: piperead-copy
if (pi->nread == pi->nwrite)
break;
ch = pi->data[pi->nread++ % PIPESIZE];
if (copyout(pr->pagetable, addr + i, &ch, 1) == -1)
break;
}
wakeup(&pi->nwrite); // DOC: piperead-wakeup
release(&pi->lock);
return i;
}

View File

@ -8,40 +8,32 @@
// the riscv Platform Level Interrupt Controller (PLIC).
//
void
plicinit(void)
{
// set desired IRQ priorities non-zero (otherwise disabled).
*(uint32*)(PLIC + UART0_IRQ*4) = 1;
*(uint32*)(PLIC + VIRTIO0_IRQ*4) = 1;
void plicinit(void) {
// set desired IRQ priorities non-zero (otherwise disabled).
*(uint32 *)(PLIC + UART0_IRQ * 4) = 1;
*(uint32 *)(PLIC + VIRTIO0_IRQ * 4) = 1;
}
void
plicinithart(void)
{
int hart = cpuid();
// set enable bits for this hart's S-mode
// for the uart and virtio disk.
*(uint32*)PLIC_SENABLE(hart) = (1 << UART0_IRQ) | (1 << VIRTIO0_IRQ);
void plicinithart(void) {
int hart = cpuid();
// set this hart's S-mode priority threshold to 0.
*(uint32*)PLIC_SPRIORITY(hart) = 0;
// set enable bits for this hart's S-mode
// for the uart and virtio disk.
*(uint32 *)PLIC_SENABLE(hart) = (1 << UART0_IRQ) | (1 << VIRTIO0_IRQ);
// set this hart's S-mode priority threshold to 0.
*(uint32 *)PLIC_SPRIORITY(hart) = 0;
}
// ask the PLIC what interrupt we should serve.
int
plic_claim(void)
{
int hart = cpuid();
int irq = *(uint32*)PLIC_SCLAIM(hart);
return irq;
int plic_claim(void) {
int hart = cpuid();
int irq = *(uint32 *)PLIC_SCLAIM(hart);
return irq;
}
// tell the PLIC we've served this IRQ.
void
plic_complete(int irq)
{
int hart = cpuid();
*(uint32*)PLIC_SCLAIM(hart) = irq;
void plic_complete(int irq) {
int hart = cpuid();
*(uint32 *)PLIC_SCLAIM(hart) = irq;
}

View File

@ -19,117 +19,107 @@ volatile int panicked = 0;
// lock to avoid interleaving concurrent printf's.
static struct {
struct spinlock lock;
int locking;
struct spinlock lock;
int locking;
} pr;
static char digits[] = "0123456789abcdef";
static void
printint(int xx, int base, int sign)
{
char buf[16];
int i;
uint x;
static void printint(int xx, int base, int sign) {
char buf[16];
int i;
uint x;
if(sign && (sign = xx < 0))
x = -xx;
else
x = xx;
if (sign && (sign = xx < 0))
x = -xx;
else
x = xx;
i = 0;
do {
buf[i++] = digits[x % base];
} while((x /= base) != 0);
i = 0;
do {
buf[i++] = digits[x % base];
} while ((x /= base) != 0);
if(sign)
buf[i++] = '-';
if (sign)
buf[i++] = '-';
while(--i >= 0)
consputc(buf[i]);
while (--i >= 0)
consputc(buf[i]);
}
static void
printptr(uint64 x)
{
int i;
consputc('0');
consputc('x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
consputc(digits[x >> (sizeof(uint64) * 8 - 4)]);
static void printptr(uint64 x) {
int i;
consputc('0');
consputc('x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
consputc(digits[x >> (sizeof(uint64) * 8 - 4)]);
}
// Print to the console. only understands %d, %x, %p, %s.
void
printf(char *fmt, ...)
{
va_list ap;
int i, c, locking;
char *s;
void printf(char *fmt, ...) {
va_list ap;
int i, c, locking;
char *s;
locking = pr.locking;
if(locking)
acquire(&pr.lock);
locking = pr.locking;
if (locking)
acquire(&pr.lock);
if (fmt == 0)
panic("null fmt");
if (fmt == 0)
panic("null fmt");
va_start(ap, fmt);
for(i = 0; (c = fmt[i] & 0xff) != 0; i++){
if(c != '%'){
consputc(c);
continue;
}
c = fmt[++i] & 0xff;
if(c == 0)
break;
switch(c){
case 'd':
printint(va_arg(ap, int), 10, 1);
break;
case 'x':
printint(va_arg(ap, int), 16, 1);
break;
case 'p':
printptr(va_arg(ap, uint64));
break;
case 's':
if((s = va_arg(ap, char*)) == 0)
s = "(null)";
for(; *s; s++)
consputc(*s);
break;
case '%':
consputc('%');
break;
default:
// Print unknown % sequence to draw attention.
consputc('%');
consputc(c);
break;
}
}
va_end(ap);
va_start(ap, fmt);
for (i = 0; (c = fmt[i] & 0xff) != 0; i++) {
if (c != '%') {
consputc(c);
continue;
}
c = fmt[++i] & 0xff;
if (c == 0)
break;
switch (c) {
case 'd':
printint(va_arg(ap, int), 10, 1);
break;
case 'x':
printint(va_arg(ap, int), 16, 1);
break;
case 'p':
printptr(va_arg(ap, uint64));
break;
case 's':
if ((s = va_arg(ap, char *)) == 0)
s = "(null)";
for (; *s; s++)
consputc(*s);
break;
case '%':
consputc('%');
break;
default:
// Print unknown % sequence to draw attention.
consputc('%');
consputc(c);
break;
}
}
va_end(ap);
if(locking)
release(&pr.lock);
if (locking)
release(&pr.lock);
}
void
panic(char *s)
{
pr.locking = 0;
printf("panic: ");
printf(s);
printf("\n");
panicked = 1; // freeze uart output from other CPUs
for(;;)
;
void panic(char *s) {
pr.locking = 0;
printf("panic: ");
printf(s);
printf("\n");
panicked = 1; // freeze uart output from other CPUs
for (;;)
;
}
void
printfinit(void)
{
initlock(&pr.lock, "pr");
pr.locking = 1;
void printfinit(void) {
initlock(&pr.lock, "pr");
pr.locking = 1;
}

File diff suppressed because it is too large Load Diff

View File

@ -12,34 +12,29 @@
#include "fs.h"
#include "buf.h"
void
ramdiskinit(void)
{
}
void ramdiskinit(void) {}
// If B_DIRTY is set, write buf to disk, clear B_DIRTY, set B_VALID.
// Else if B_VALID is not set, read buf from disk, set B_VALID.
void
ramdiskrw(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("ramdiskrw: buf not locked");
if((b->flags & (B_VALID|B_DIRTY)) == B_VALID)
panic("ramdiskrw: nothing to do");
void ramdiskrw(struct buf *b) {
if (!holdingsleep(&b->lock))
panic("ramdiskrw: buf not locked");
if ((b->flags & (B_VALID | B_DIRTY)) == B_VALID)
panic("ramdiskrw: nothing to do");
if(b->blockno >= FSSIZE)
panic("ramdiskrw: blockno too big");
if (b->blockno >= FSSIZE)
panic("ramdiskrw: blockno too big");
uint64 diskaddr = b->blockno * BSIZE;
char *addr = (char *)RAMDISK + diskaddr;
uint64 diskaddr = b->blockno * BSIZE;
char *addr = (char *)RAMDISK + diskaddr;
if(b->flags & B_DIRTY){
// write
memmove(addr, b->data, BSIZE);
b->flags &= ~B_DIRTY;
} else {
// read
memmove(b->data, addr, BSIZE);
b->flags |= B_VALID;
}
if (b->flags & B_DIRTY) {
// write
memmove(addr, b->data, BSIZE);
b->flags &= ~B_DIRTY;
} else {
// read
memmove(b->data, addr, BSIZE);
b->flags |= B_VALID;
}
}

View File

@ -9,47 +9,36 @@
#include "proc.h"
#include "sleeplock.h"
void
initsleeplock(struct sleeplock *lk, char *name)
{
initlock(&lk->lk, "sleep lock");
lk->name = name;
lk->locked = 0;
lk->pid = 0;
void initsleeplock(struct sleeplock *lk, char *name) {
initlock(&lk->lk, "sleep lock");
lk->name = name;
lk->locked = 0;
lk->pid = 0;
}
void
acquiresleep(struct sleeplock *lk)
{
acquire(&lk->lk);
while (lk->locked) {
sleep(lk, &lk->lk);
}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->lk);
void acquiresleep(struct sleeplock *lk) {
acquire(&lk->lk);
while (lk->locked) {
sleep(lk, &lk->lk);
}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->lk);
}
void
releasesleep(struct sleeplock *lk)
{
acquire(&lk->lk);
lk->locked = 0;
lk->pid = 0;
wakeup(lk);
release(&lk->lk);
void releasesleep(struct sleeplock *lk) {
acquire(&lk->lk);
lk->locked = 0;
lk->pid = 0;
wakeup(lk);
release(&lk->lk);
}
int
holdingsleep(struct sleeplock *lk)
{
int r;
acquire(&lk->lk);
r = lk->locked && (lk->pid == myproc()->pid);
release(&lk->lk);
return r;
int holdingsleep(struct sleeplock *lk) {
int r;
acquire(&lk->lk);
r = lk->locked && (lk->pid == myproc()->pid);
release(&lk->lk);
return r;
}

View File

@ -8,103 +8,91 @@
#include "proc.h"
#include "defs.h"
void
initlock(struct spinlock *lk, char *name)
{
lk->name = name;
lk->locked = 0;
lk->cpu = 0;
void initlock(struct spinlock *lk, char *name) {
lk->name = name;
lk->locked = 0;
lk->cpu = 0;
}
// Acquire the lock.
// Loops (spins) until the lock is acquired.
void
acquire(struct spinlock *lk)
{
push_off(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");
void acquire(struct spinlock *lk) {
push_off(); // disable interrupts to avoid deadlock.
if (holding(lk))
panic("acquire");
// On RISC-V, sync_lock_test_and_set turns into an atomic swap:
// a5 = 1
// s1 = &lk->locked
// amoswap.w.aq a5, a5, (s1)
while(__sync_lock_test_and_set(&lk->locked, 1) != 0)
;
// On RISC-V, sync_lock_test_and_set turns into an atomic swap:
// a5 = 1
// s1 = &lk->locked
// amoswap.w.aq a5, a5, (s1)
while (__sync_lock_test_and_set(&lk->locked, 1) != 0)
;
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen strictly after the lock is acquired.
// On RISC-V, this emits a fence instruction.
__sync_synchronize();
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen strictly after the lock is acquired.
// On RISC-V, this emits a fence instruction.
__sync_synchronize();
// Record info about lock acquisition for holding() and debugging.
lk->cpu = mycpu();
// Record info about lock acquisition for holding() and debugging.
lk->cpu = mycpu();
}
// Release the lock.
void
release(struct spinlock *lk)
{
if(!holding(lk))
panic("release");
void release(struct spinlock *lk) {
if (!holding(lk))
panic("release");
lk->cpu = 0;
lk->cpu = 0;
// Tell the C compiler and the CPU to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other CPUs before the lock is released,
// and that loads in the critical section occur strictly before
// the lock is released.
// On RISC-V, this emits a fence instruction.
__sync_synchronize();
// Tell the C compiler and the CPU to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other CPUs before the lock is released,
// and that loads in the critical section occur strictly before
// the lock is released.
// On RISC-V, this emits a fence instruction.
__sync_synchronize();
// Release the lock, equivalent to lk->locked = 0.
// This code doesn't use a C assignment, since the C standard
// implies that an assignment might be implemented with
// multiple store instructions.
// On RISC-V, sync_lock_release turns into an atomic swap:
// s1 = &lk->locked
// amoswap.w zero, zero, (s1)
__sync_lock_release(&lk->locked);
// Release the lock, equivalent to lk->locked = 0.
// This code doesn't use a C assignment, since the C standard
// implies that an assignment might be implemented with
// multiple store instructions.
// On RISC-V, sync_lock_release turns into an atomic swap:
// s1 = &lk->locked
// amoswap.w zero, zero, (s1)
__sync_lock_release(&lk->locked);
pop_off();
pop_off();
}
// Check whether this cpu is holding the lock.
// Interrupts must be off.
int
holding(struct spinlock *lk)
{
int r;
r = (lk->locked && lk->cpu == mycpu());
return r;
int holding(struct spinlock *lk) {
int r;
r = (lk->locked && lk->cpu == mycpu());
return r;
}
// push_off/pop_off are like intr_off()/intr_on() except that they are matched:
// it takes two pop_off()s to undo two push_off()s. Also, if interrupts
// are initially off, then push_off, pop_off leaves them off.
void
push_off(void)
{
int old = intr_get();
void push_off(void) {
int old = intr_get();
intr_off();
if(mycpu()->noff == 0)
mycpu()->intena = old;
mycpu()->noff += 1;
intr_off();
if (mycpu()->noff == 0)
mycpu()->intena = old;
mycpu()->noff += 1;
}
void
pop_off(void)
{
struct cpu *c = mycpu();
if(intr_get())
panic("pop_off - interruptible");
if(c->noff < 1)
panic("pop_off");
c->noff -= 1;
if(c->noff == 0 && c->intena)
intr_on();
void pop_off(void) {
struct cpu *c = mycpu();
if (intr_get())
panic("pop_off - interruptible");
if (c->noff < 1)
panic("pop_off");
c->noff -= 1;
if (c->noff == 0 && c->intena)
intr_on();
}

View File

@ -8,7 +8,7 @@ void main();
void timerinit();
// entry.S needs one stack per CPU.
__attribute__ ((aligned (16))) char stack0[4096 * NCPU];
__attribute__((aligned(16))) char stack0[4096 * NCPU];
// a scratch area per CPU for machine-mode timer interrupts.
uint64 timer_scratch[NCPU][5];
@ -17,41 +17,39 @@ uint64 timer_scratch[NCPU][5];
extern void timervec();
// entry.S jumps here in machine mode on stack0.
void
start()
{
// set M Previous Privilege mode to Supervisor, for mret.
unsigned long x = r_mstatus();
x &= ~MSTATUS_MPP_MASK;
x |= MSTATUS_MPP_S;
w_mstatus(x);
void start() {
// set M Previous Privilege mode to Supervisor, for mret.
unsigned long x = r_mstatus();
x &= ~MSTATUS_MPP_MASK;
x |= MSTATUS_MPP_S;
w_mstatus(x);
// set M Exception Program Counter to main, for mret.
// requires gcc -mcmodel=medany
w_mepc((uint64)main);
// set M Exception Program Counter to main, for mret.
// requires gcc -mcmodel=medany
w_mepc((uint64)main);
// disable paging for now.
w_satp(0);
// disable paging for now.
w_satp(0);
// delegate all interrupts and exceptions to supervisor mode.
w_medeleg(0xffff);
w_mideleg(0xffff);
w_sie(r_sie() | SIE_SEIE | SIE_STIE | SIE_SSIE);
// delegate all interrupts and exceptions to supervisor mode.
w_medeleg(0xffff);
w_mideleg(0xffff);
w_sie(r_sie() | SIE_SEIE | SIE_STIE | SIE_SSIE);
// configure Physical Memory Protection to give supervisor mode
// access to all of physical memory.
w_pmpaddr0(0x3fffffffffffffull);
w_pmpcfg0(0xf);
// configure Physical Memory Protection to give supervisor mode
// access to all of physical memory.
w_pmpaddr0(0x3fffffffffffffull);
w_pmpcfg0(0xf);
// ask for clock interrupts.
timerinit();
// ask for clock interrupts.
timerinit();
// keep each CPU's hartid in its tp register, for cpuid().
int id = r_mhartid();
w_tp(id);
// keep each CPU's hartid in its tp register, for cpuid().
int id = r_mhartid();
w_tp(id);
// switch to supervisor mode and jump to main().
asm volatile("mret");
// switch to supervisor mode and jump to main().
asm volatile("mret");
}
// arrange to receive timer interrupts.
@ -59,31 +57,29 @@ start()
// at timervec in kernelvec.S,
// which turns them into software interrupts for
// devintr() in trap.c.
void
timerinit()
{
// each CPU has a separate source of timer interrupts.
int id = r_mhartid();
void timerinit() {
// each CPU has a separate source of timer interrupts.
int id = r_mhartid();
// ask the CLINT for a timer interrupt.
int interval = 1000000; // cycles; about 1/10th second in qemu.
*(uint64*)CLINT_MTIMECMP(id) = *(uint64*)CLINT_MTIME + interval;
// ask the CLINT for a timer interrupt.
int interval = 1000000; // cycles; about 1/10th second in qemu.
*(uint64 *)CLINT_MTIMECMP(id) = *(uint64 *)CLINT_MTIME + interval;
// prepare information in scratch[] for timervec.
// scratch[0..2] : space for timervec to save registers.
// scratch[3] : address of CLINT MTIMECMP register.
// scratch[4] : desired interval (in cycles) between timer interrupts.
uint64 *scratch = &timer_scratch[id][0];
scratch[3] = CLINT_MTIMECMP(id);
scratch[4] = interval;
w_mscratch((uint64)scratch);
// prepare information in scratch[] for timervec.
// scratch[0..2] : space for timervec to save registers.
// scratch[3] : address of CLINT MTIMECMP register.
// scratch[4] : desired interval (in cycles) between timer interrupts.
uint64 *scratch = &timer_scratch[id][0];
scratch[3] = CLINT_MTIMECMP(id);
scratch[4] = interval;
w_mscratch((uint64)scratch);
// set the machine-mode trap handler.
w_mtvec((uint64)timervec);
// set the machine-mode trap handler.
w_mtvec((uint64)timervec);
// enable machine-mode interrupts.
w_mstatus(r_mstatus() | MSTATUS_MIE);
// enable machine-mode interrupts.
w_mstatus(r_mstatus() | MSTATUS_MIE);
// enable machine-mode timer interrupts.
w_mie(r_mie() | MIE_MTIE);
// enable machine-mode timer interrupts.
w_mie(r_mie() | MIE_MTIE);
}

View File

@ -1,107 +1,90 @@
#include "types.h"
void*
memset(void *dst, int c, uint n)
{
char *cdst = (char *) dst;
int i;
for(i = 0; i < n; i++){
cdst[i] = c;
}
return dst;
void *memset(void *dst, int c, uint n) {
char *cdst = (char *)dst;
int i;
for (i = 0; i < n; i++) {
cdst[i] = c;
}
return dst;
}
int
memcmp(const void *v1, const void *v2, uint n)
{
const uchar *s1, *s2;
int memcmp(const void *v1, const void *v2, uint n) {
const uchar *s1, *s2;
s1 = v1;
s2 = v2;
while(n-- > 0){
if(*s1 != *s2)
return *s1 - *s2;
s1++, s2++;
}
s1 = v1;
s2 = v2;
while (n-- > 0) {
if (*s1 != *s2)
return *s1 - *s2;
s1++, s2++;
}
return 0;
return 0;
}
void*
memmove(void *dst, const void *src, uint n)
{
const char *s;
char *d;
void *memmove(void *dst, const void *src, uint n) {
const char *s;
char *d;
if(n == 0)
return dst;
s = src;
d = dst;
if(s < d && s + n > d){
s += n;
d += n;
while(n-- > 0)
*--d = *--s;
} else
while(n-- > 0)
*d++ = *s++;
if (n == 0)
return dst;
return dst;
s = src;
d = dst;
if (s < d && s + n > d) {
s += n;
d += n;
while (n-- > 0)
*--d = *--s;
} else
while (n-- > 0)
*d++ = *s++;
return dst;
}
// memcpy exists to placate GCC. Use memmove.
void*
memcpy(void *dst, const void *src, uint n)
{
return memmove(dst, src, n);
void *memcpy(void *dst, const void *src, uint n) {
return memmove(dst, src, n);
}
int
strncmp(const char *p, const char *q, uint n)
{
while(n > 0 && *p && *p == *q)
n--, p++, q++;
if(n == 0)
return 0;
return (uchar)*p - (uchar)*q;
int strncmp(const char *p, const char *q, uint n) {
while (n > 0 && *p && *p == *q)
n--, p++, q++;
if (n == 0)
return 0;
return (uchar)*p - (uchar)*q;
}
char*
strncpy(char *s, const char *t, int n)
{
char *os;
char *strncpy(char *s, const char *t, int n) {
char *os;
os = s;
while(n-- > 0 && (*s++ = *t++) != 0)
;
while(n-- > 0)
*s++ = 0;
return os;
os = s;
while (n-- > 0 && (*s++ = *t++) != 0)
;
while (n-- > 0)
*s++ = 0;
return os;
}
// Like strncpy but guaranteed to NUL-terminate.
char*
safestrcpy(char *s, const char *t, int n)
{
char *os;
char *safestrcpy(char *s, const char *t, int n) {
char *os;
os = s;
if(n <= 0)
return os;
while(--n > 0 && (*s++ = *t++) != 0)
;
*s = 0;
return os;
os = s;
if (n <= 0)
return os;
while (--n > 0 && (*s++ = *t++) != 0)
;
*s = 0;
return os;
}
int
strlen(const char *s)
{
int n;
int strlen(const char *s) {
int n;
for(n = 0; s[n]; n++)
;
return n;
for (n = 0; s[n]; n++)
;
return n;
}

View File

@ -8,75 +8,60 @@
#include "defs.h"
// Fetch the uint64 at addr from the current process.
int
fetchaddr(uint64 addr, uint64 *ip)
{
struct proc *p = myproc();
if(addr >= p->sz || addr+sizeof(uint64) > p->sz) // both tests needed, in case of overflow
return -1;
if(copyin(p->pagetable, (char *)ip, addr, sizeof(*ip)) != 0)
return -1;
return 0;
int fetchaddr(uint64 addr, uint64 *ip) {
struct proc *p = myproc();
if (addr >= p->sz ||
addr + sizeof(uint64) > p->sz) // both tests needed, in case of overflow
return -1;
if (copyin(p->pagetable, (char *)ip, addr, sizeof(*ip)) != 0)
return -1;
return 0;
}
// Fetch the nul-terminated string at addr from the current process.
// Returns length of string, not including nul, or -1 for error.
int
fetchstr(uint64 addr, char *buf, int max)
{
struct proc *p = myproc();
if(copyinstr(p->pagetable, buf, addr, max) < 0)
return -1;
return strlen(buf);
int fetchstr(uint64 addr, char *buf, int max) {
struct proc *p = myproc();
if (copyinstr(p->pagetable, buf, addr, max) < 0)
return -1;
return strlen(buf);
}
static uint64
argraw(int n)
{
struct proc *p = myproc();
switch (n) {
case 0:
return p->trapframe->a0;
case 1:
return p->trapframe->a1;
case 2:
return p->trapframe->a2;
case 3:
return p->trapframe->a3;
case 4:
return p->trapframe->a4;
case 5:
return p->trapframe->a5;
}
panic("argraw");
return -1;
static uint64 argraw(int n) {
struct proc *p = myproc();
switch (n) {
case 0:
return p->trapframe->a0;
case 1:
return p->trapframe->a1;
case 2:
return p->trapframe->a2;
case 3:
return p->trapframe->a3;
case 4:
return p->trapframe->a4;
case 5:
return p->trapframe->a5;
}
panic("argraw");
return -1;
}
// Fetch the nth 32-bit system call argument.
void
argint(int n, int *ip)
{
*ip = argraw(n);
}
void argint(int n, int *ip) { *ip = argraw(n); }
// Retrieve an argument as a pointer.
// Doesn't check for legality, since
// copyin/copyout will do that.
void
argaddr(int n, uint64 *ip)
{
*ip = argraw(n);
}
void argaddr(int n, uint64 *ip) { *ip = argraw(n); }
// Fetch the nth word-sized system call argument as a null-terminated string.
// Copies into buf, at most max.
// Returns string length if OK (including nul), -1 if error.
int
argstr(int n, char *buf, int max)
{
uint64 addr;
argaddr(n, &addr);
return fetchstr(addr, buf, max);
int argstr(int n, char *buf, int max) {
uint64 addr;
argaddr(n, &addr);
return fetchstr(addr, buf, max);
}
// Prototypes for the functions that handle system calls.
@ -105,43 +90,26 @@ extern uint64 sys_close(void);
// An array mapping syscall numbers from syscall.h
// to the function that handles the system call.
static uint64 (*syscalls[])(void) = {
[SYS_fork] sys_fork,
[SYS_exit] sys_exit,
[SYS_wait] sys_wait,
[SYS_pipe] sys_pipe,
[SYS_read] sys_read,
[SYS_kill] sys_kill,
[SYS_exec] sys_exec,
[SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir,
[SYS_dup] sys_dup,
[SYS_getpid] sys_getpid,
[SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep,
[SYS_uptime] sys_uptime,
[SYS_open] sys_open,
[SYS_write] sys_write,
[SYS_mknod] sys_mknod,
[SYS_unlink] sys_unlink,
[SYS_link] sys_link,
[SYS_mkdir] sys_mkdir,
[SYS_close] sys_close,
[SYS_fork] sys_fork, [SYS_exit] sys_exit, [SYS_wait] sys_wait,
[SYS_pipe] sys_pipe, [SYS_read] sys_read, [SYS_kill] sys_kill,
[SYS_exec] sys_exec, [SYS_fstat] sys_fstat, [SYS_chdir] sys_chdir,
[SYS_dup] sys_dup, [SYS_getpid] sys_getpid, [SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep, [SYS_uptime] sys_uptime, [SYS_open] sys_open,
[SYS_write] sys_write, [SYS_mknod] sys_mknod, [SYS_unlink] sys_unlink,
[SYS_link] sys_link, [SYS_mkdir] sys_mkdir, [SYS_close] sys_close,
};
void
syscall(void)
{
int num;
struct proc *p = myproc();
void syscall(void) {
int num;
struct proc *p = myproc();
num = p->trapframe->a7;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
// Use num to lookup the system call function for num, call it,
// and store its return value in p->trapframe->a0
p->trapframe->a0 = syscalls[num]();
} else {
printf("%d %s: unknown sys call %d\n",
p->pid, p->name, num);
p->trapframe->a0 = -1;
}
num = p->trapframe->a7;
if (num > 0 && num < NELEM(syscalls) && syscalls[num]) {
// Use num to lookup the system call function for num, call it,
// and store its return value in p->trapframe->a0
p->trapframe->a0 = syscalls[num]();
} else {
printf("%d %s: unknown sys call %d\n", p->pid, p->name, num);
p->trapframe->a0 = -1;
}
}

View File

@ -18,488 +18,455 @@
// Fetch the nth word-sized system call argument as a file descriptor
// and return both the descriptor and the corresponding struct file.
static int
argfd(int n, int *pfd, struct file **pf)
{
int fd;
struct file *f;
static int argfd(int n, int *pfd, struct file **pf) {
int fd;
struct file *f;
argint(n, &fd);
if(fd < 0 || fd >= NOFILE || (f=myproc()->ofile[fd]) == 0)
return -1;
if(pfd)
*pfd = fd;
if(pf)
*pf = f;
return 0;
argint(n, &fd);
if (fd < 0 || fd >= NOFILE || (f = myproc()->ofile[fd]) == 0)
return -1;
if (pfd)
*pfd = fd;
if (pf)
*pf = f;
return 0;
}
// Allocate a file descriptor for the given file.
// Takes over file reference from caller on success.
static int
fdalloc(struct file *f)
{
int fd;
struct proc *p = myproc();
static int fdalloc(struct file *f) {
int fd;
struct proc *p = myproc();
for(fd = 0; fd < NOFILE; fd++){
if(p->ofile[fd] == 0){
p->ofile[fd] = f;
return fd;
}
}
return -1;
for (fd = 0; fd < NOFILE; fd++) {
if (p->ofile[fd] == 0) {
p->ofile[fd] = f;
return fd;
}
}
return -1;
}
uint64
sys_dup(void)
{
struct file *f;
int fd;
uint64 sys_dup(void) {
struct file *f;
int fd;
if(argfd(0, 0, &f) < 0)
return -1;
if((fd=fdalloc(f)) < 0)
return -1;
filedup(f);
return fd;
if (argfd(0, 0, &f) < 0)
return -1;
if ((fd = fdalloc(f)) < 0)
return -1;
filedup(f);
return fd;
}
uint64
sys_read(void)
{
struct file *f;
int n;
uint64 p;
uint64 sys_read(void) {
struct file *f;
int n;
uint64 p;
argaddr(1, &p);
argint(2, &n);
if(argfd(0, 0, &f) < 0)
return -1;
return fileread(f, p, n);
argaddr(1, &p);
argint(2, &n);
if (argfd(0, 0, &f) < 0)
return -1;
return fileread(f, p, n);
}
uint64
sys_write(void)
{
struct file *f;
int n;
uint64 p;
argaddr(1, &p);
argint(2, &n);
if(argfd(0, 0, &f) < 0)
return -1;
uint64 sys_write(void) {
struct file *f;
int n;
uint64 p;
return filewrite(f, p, n);
argaddr(1, &p);
argint(2, &n);
if (argfd(0, 0, &f) < 0)
return -1;
return filewrite(f, p, n);
}
uint64
sys_close(void)
{
int fd;
struct file *f;
uint64 sys_close(void) {
int fd;
struct file *f;
if(argfd(0, &fd, &f) < 0)
return -1;
myproc()->ofile[fd] = 0;
fileclose(f);
return 0;
if (argfd(0, &fd, &f) < 0)
return -1;
myproc()->ofile[fd] = 0;
fileclose(f);
return 0;
}
uint64
sys_fstat(void)
{
struct file *f;
uint64 st; // user pointer to struct stat
uint64 sys_fstat(void) {
struct file *f;
uint64 st; // user pointer to struct stat
argaddr(1, &st);
if(argfd(0, 0, &f) < 0)
return -1;
return filestat(f, st);
argaddr(1, &st);
if (argfd(0, 0, &f) < 0)
return -1;
return filestat(f, st);
}
// Create the path new as a link to the same inode as old.
uint64
sys_link(void)
{
char name[DIRSIZ], new[MAXPATH], old[MAXPATH];
struct inode *dp, *ip;
uint64 sys_link(void) {
char name[DIRSIZ], new[MAXPATH], old[MAXPATH];
struct inode *dp, *ip;
if(argstr(0, old, MAXPATH) < 0 || argstr(1, new, MAXPATH) < 0)
return -1;
if (argstr(0, old, MAXPATH) < 0 || argstr(1, new, MAXPATH) < 0)
return -1;
begin_op();
if((ip = namei(old)) == 0){
end_op();
return -1;
}
begin_op();
if ((ip = namei(old)) == 0) {
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR){
iunlockput(ip);
end_op();
return -1;
}
ilock(ip);
if (ip->type == T_DIR) {
iunlockput(ip);
end_op();
return -1;
}
ip->nlink++;
iupdate(ip);
iunlock(ip);
ip->nlink++;
iupdate(ip);
iunlock(ip);
if((dp = nameiparent(new, name)) == 0)
goto bad;
ilock(dp);
if(dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0){
iunlockput(dp);
goto bad;
}
iunlockput(dp);
iput(ip);
if ((dp = nameiparent(new, name)) == 0)
goto bad;
ilock(dp);
if (dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0) {
iunlockput(dp);
goto bad;
}
iunlockput(dp);
iput(ip);
end_op();
end_op();
return 0;
return 0;
bad:
ilock(ip);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
end_op();
return -1;
ilock(ip);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
end_op();
return -1;
}
// Is the directory dp empty except for "." and ".." ?
static int
isdirempty(struct inode *dp)
{
int off;
struct dirent de;
static int isdirempty(struct inode *dp) {
int off;
struct dirent de;
for(off=2*sizeof(de); off<dp->size; off+=sizeof(de)){
if(readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("isdirempty: readi");
if(de.inum != 0)
return 0;
}
return 1;
for (off = 2 * sizeof(de); off < dp->size; off += sizeof(de)) {
if (readi(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("isdirempty: readi");
if (de.inum != 0)
return 0;
}
return 1;
}
uint64
sys_unlink(void)
{
struct inode *ip, *dp;
struct dirent de;
char name[DIRSIZ], path[MAXPATH];
uint off;
uint64 sys_unlink(void) {
struct inode *ip, *dp;
struct dirent de;
char name[DIRSIZ], path[MAXPATH];
uint off;
if(argstr(0, path, MAXPATH) < 0)
return -1;
if (argstr(0, path, MAXPATH) < 0)
return -1;
begin_op();
if((dp = nameiparent(path, name)) == 0){
end_op();
return -1;
}
begin_op();
if ((dp = nameiparent(path, name)) == 0) {
end_op();
return -1;
}
ilock(dp);
ilock(dp);
// Cannot unlink "." or "..".
if(namecmp(name, ".") == 0 || namecmp(name, "..") == 0)
goto bad;
// Cannot unlink "." or "..".
if (namecmp(name, ".") == 0 || namecmp(name, "..") == 0)
goto bad;
if((ip = dirlookup(dp, name, &off)) == 0)
goto bad;
ilock(ip);
if ((ip = dirlookup(dp, name, &off)) == 0)
goto bad;
ilock(ip);
if(ip->nlink < 1)
panic("unlink: nlink < 1");
if(ip->type == T_DIR && !isdirempty(ip)){
iunlockput(ip);
goto bad;
}
if (ip->nlink < 1)
panic("unlink: nlink < 1");
if (ip->type == T_DIR && !isdirempty(ip)) {
iunlockput(ip);
goto bad;
}
memset(&de, 0, sizeof(de));
if(writei(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("unlink: writei");
if(ip->type == T_DIR){
dp->nlink--;
iupdate(dp);
}
iunlockput(dp);
memset(&de, 0, sizeof(de));
if (writei(dp, 0, (uint64)&de, off, sizeof(de)) != sizeof(de))
panic("unlink: writei");
if (ip->type == T_DIR) {
dp->nlink--;
iupdate(dp);
}
iunlockput(dp);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
end_op();
end_op();
return 0;
return 0;
bad:
iunlockput(dp);
end_op();
return -1;
iunlockput(dp);
end_op();
return -1;
}
static struct inode*
create(char *path, short type, short major, short minor)
{
struct inode *ip, *dp;
char name[DIRSIZ];
static struct inode *create(char *path, short type, short major, short minor) {
struct inode *ip, *dp;
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return 0;
if ((dp = nameiparent(path, name)) == 0)
return 0;
ilock(dp);
ilock(dp);
if((ip = dirlookup(dp, name, 0)) != 0){
iunlockput(dp);
ilock(ip);
if(type == T_FILE && (ip->type == T_FILE || ip->type == T_DEVICE))
return ip;
iunlockput(ip);
return 0;
}
if ((ip = dirlookup(dp, name, 0)) != 0) {
iunlockput(dp);
ilock(ip);
if (type == T_FILE && (ip->type == T_FILE || ip->type == T_DEVICE))
return ip;
iunlockput(ip);
return 0;
}
if((ip = ialloc(dp->dev, type)) == 0){
iunlockput(dp);
return 0;
}
if ((ip = ialloc(dp->dev, type)) == 0) {
iunlockput(dp);
return 0;
}
ilock(ip);
ip->major = major;
ip->minor = minor;
ip->nlink = 1;
iupdate(ip);
ilock(ip);
ip->major = major;
ip->minor = minor;
ip->nlink = 1;
iupdate(ip);
if(type == T_DIR){ // Create . and .. entries.
// No ip->nlink++ for ".": avoid cyclic ref count.
if(dirlink(ip, ".", ip->inum) < 0 || dirlink(ip, "..", dp->inum) < 0)
goto fail;
}
if (type == T_DIR) { // Create . and .. entries.
// No ip->nlink++ for ".": avoid cyclic ref count.
if (dirlink(ip, ".", ip->inum) < 0 || dirlink(ip, "..", dp->inum) < 0)
goto fail;
}
if(dirlink(dp, name, ip->inum) < 0)
goto fail;
if (dirlink(dp, name, ip->inum) < 0)
goto fail;
if(type == T_DIR){
// now that success is guaranteed:
dp->nlink++; // for ".."
iupdate(dp);
}
if (type == T_DIR) {
// now that success is guaranteed:
dp->nlink++; // for ".."
iupdate(dp);
}
iunlockput(dp);
iunlockput(dp);
return ip;
return ip;
fail:
// something went wrong. de-allocate ip.
ip->nlink = 0;
iupdate(ip);
iunlockput(ip);
iunlockput(dp);
return 0;
fail:
// something went wrong. de-allocate ip.
ip->nlink = 0;
iupdate(ip);
iunlockput(ip);
iunlockput(dp);
return 0;
}
uint64
sys_open(void)
{
char path[MAXPATH];
int fd, omode;
struct file *f;
struct inode *ip;
int n;
uint64 sys_open(void) {
char path[MAXPATH];
int fd, omode;
struct file *f;
struct inode *ip;
int n;
argint(1, &omode);
if((n = argstr(0, path, MAXPATH)) < 0)
return -1;
argint(1, &omode);
if ((n = argstr(0, path, MAXPATH)) < 0)
return -1;
begin_op();
begin_op();
if(omode & O_CREATE){
ip = create(path, T_FILE, 0, 0);
if(ip == 0){
end_op();
return -1;
}
} else {
if((ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR && omode != O_RDONLY){
iunlockput(ip);
end_op();
return -1;
}
}
if (omode & O_CREATE) {
ip = create(path, T_FILE, 0, 0);
if (ip == 0) {
end_op();
return -1;
}
} else {
if ((ip = namei(path)) == 0) {
end_op();
return -1;
}
ilock(ip);
if (ip->type == T_DIR && omode != O_RDONLY) {
iunlockput(ip);
end_op();
return -1;
}
}
if(ip->type == T_DEVICE && (ip->major < 0 || ip->major >= NDEV)){
iunlockput(ip);
end_op();
return -1;
}
if (ip->type == T_DEVICE && (ip->major < 0 || ip->major >= NDEV)) {
iunlockput(ip);
end_op();
return -1;
}
if((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0){
if(f)
fileclose(f);
iunlockput(ip);
end_op();
return -1;
}
if ((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0) {
if (f)
fileclose(f);
iunlockput(ip);
end_op();
return -1;
}
if(ip->type == T_DEVICE){
f->type = FD_DEVICE;
f->major = ip->major;
} else {
f->type = FD_INODE;
f->off = 0;
}
f->ip = ip;
f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR);
if (ip->type == T_DEVICE) {
f->type = FD_DEVICE;
f->major = ip->major;
} else {
f->type = FD_INODE;
f->off = 0;
}
f->ip = ip;
f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR);
if((omode & O_TRUNC) && ip->type == T_FILE){
itrunc(ip);
}
if ((omode & O_TRUNC) && ip->type == T_FILE) {
itrunc(ip);
}
iunlock(ip);
end_op();
iunlock(ip);
end_op();
return fd;
return fd;
}
uint64
sys_mkdir(void)
{
char path[MAXPATH];
struct inode *ip;
uint64 sys_mkdir(void) {
char path[MAXPATH];
struct inode *ip;
begin_op();
if(argstr(0, path, MAXPATH) < 0 || (ip = create(path, T_DIR, 0, 0)) == 0){
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
begin_op();
if (argstr(0, path, MAXPATH) < 0 || (ip = create(path, T_DIR, 0, 0)) == 0) {
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
}
uint64
sys_mknod(void)
{
struct inode *ip;
char path[MAXPATH];
int major, minor;
uint64 sys_mknod(void) {
struct inode *ip;
char path[MAXPATH];
int major, minor;
begin_op();
argint(1, &major);
argint(2, &minor);
if((argstr(0, path, MAXPATH)) < 0 ||
(ip = create(path, T_DEVICE, major, minor)) == 0){
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
begin_op();
argint(1, &major);
argint(2, &minor);
if ((argstr(0, path, MAXPATH)) < 0 ||
(ip = create(path, T_DEVICE, major, minor)) == 0) {
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
}
uint64
sys_chdir(void)
{
char path[MAXPATH];
struct inode *ip;
struct proc *p = myproc();
begin_op();
if(argstr(0, path, MAXPATH) < 0 || (ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type != T_DIR){
iunlockput(ip);
end_op();
return -1;
}
iunlock(ip);
iput(p->cwd);
end_op();
p->cwd = ip;
return 0;
uint64 sys_chdir(void) {
char path[MAXPATH];
struct inode *ip;
struct proc *p = myproc();
begin_op();
if (argstr(0, path, MAXPATH) < 0 || (ip = namei(path)) == 0) {
end_op();
return -1;
}
ilock(ip);
if (ip->type != T_DIR) {
iunlockput(ip);
end_op();
return -1;
}
iunlock(ip);
iput(p->cwd);
end_op();
p->cwd = ip;
return 0;
}
uint64
sys_exec(void)
{
char path[MAXPATH], *argv[MAXARG];
int i;
uint64 uargv, uarg;
uint64 sys_exec(void) {
char path[MAXPATH], *argv[MAXARG];
int i;
uint64 uargv, uarg;
argaddr(1, &uargv);
if(argstr(0, path, MAXPATH) < 0) {
return -1;
}
memset(argv, 0, sizeof(argv));
for(i=0;; i++){
if(i >= NELEM(argv)){
goto bad;
}
if(fetchaddr(uargv+sizeof(uint64)*i, (uint64*)&uarg) < 0){
goto bad;
}
if(uarg == 0){
argv[i] = 0;
break;
}
argv[i] = kalloc();
if(argv[i] == 0)
goto bad;
if(fetchstr(uarg, argv[i], PGSIZE) < 0)
goto bad;
}
argaddr(1, &uargv);
if (argstr(0, path, MAXPATH) < 0) {
return -1;
}
memset(argv, 0, sizeof(argv));
for (i = 0;; i++) {
if (i >= NELEM(argv)) {
goto bad;
}
if (fetchaddr(uargv + sizeof(uint64) * i, (uint64 *)&uarg) < 0) {
goto bad;
}
if (uarg == 0) {
argv[i] = 0;
break;
}
argv[i] = kalloc();
if (argv[i] == 0)
goto bad;
if (fetchstr(uarg, argv[i], PGSIZE) < 0)
goto bad;
}
int ret = exec(path, argv);
int ret = exec(path, argv);
for(i = 0; i < NELEM(argv) && argv[i] != 0; i++)
kfree(argv[i]);
for (i = 0; i < NELEM(argv) && argv[i] != 0; i++)
kfree(argv[i]);
return ret;
return ret;
bad:
for(i = 0; i < NELEM(argv) && argv[i] != 0; i++)
kfree(argv[i]);
return -1;
bad:
for (i = 0; i < NELEM(argv) && argv[i] != 0; i++)
kfree(argv[i]);
return -1;
}
uint64
sys_pipe(void)
{
uint64 fdarray; // user pointer to array of two integers
struct file *rf, *wf;
int fd0, fd1;
struct proc *p = myproc();
uint64 sys_pipe(void) {
uint64 fdarray; // user pointer to array of two integers
struct file *rf, *wf;
int fd0, fd1;
struct proc *p = myproc();
argaddr(0, &fdarray);
if(pipealloc(&rf, &wf) < 0)
return -1;
fd0 = -1;
if((fd0 = fdalloc(rf)) < 0 || (fd1 = fdalloc(wf)) < 0){
if(fd0 >= 0)
p->ofile[fd0] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
if(copyout(p->pagetable, fdarray, (char*)&fd0, sizeof(fd0)) < 0 ||
copyout(p->pagetable, fdarray+sizeof(fd0), (char *)&fd1, sizeof(fd1)) < 0){
p->ofile[fd0] = 0;
p->ofile[fd1] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
return 0;
argaddr(0, &fdarray);
if (pipealloc(&rf, &wf) < 0)
return -1;
fd0 = -1;
if ((fd0 = fdalloc(rf)) < 0 || (fd1 = fdalloc(wf)) < 0) {
if (fd0 >= 0)
p->ofile[fd0] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
if (copyout(p->pagetable, fdarray, (char *)&fd0, sizeof(fd0)) < 0 ||
copyout(p->pagetable, fdarray + sizeof(fd0), (char *)&fd1,
sizeof(fd1)) < 0) {
p->ofile[fd0] = 0;
p->ofile[fd1] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
return 0;
}

View File

@ -6,86 +6,66 @@
#include "spinlock.h"
#include "proc.h"
uint64
sys_exit(void)
{
int n;
argint(0, &n);
exit(n);
return 0; // not reached
uint64 sys_exit(void) {
int n;
argint(0, &n);
exit(n);
return 0; // not reached
}
uint64
sys_getpid(void)
{
return myproc()->pid;
uint64 sys_getpid(void) { return myproc()->pid; }
uint64 sys_fork(void) { return fork(); }
uint64 sys_wait(void) {
uint64 p;
argaddr(0, &p);
return wait(p);
}
uint64
sys_fork(void)
{
return fork();
uint64 sys_sbrk(void) {
uint64 addr;
int n;
argint(0, &n);
addr = myproc()->sz;
if (growproc(n) < 0)
return -1;
return addr;
}
uint64
sys_wait(void)
{
uint64 p;
argaddr(0, &p);
return wait(p);
uint64 sys_sleep(void) {
int n;
uint ticks0;
argint(0, &n);
acquire(&tickslock);
ticks0 = ticks;
while (ticks - ticks0 < n) {
if (killed(myproc())) {
release(&tickslock);
return -1;
}
sleep(&ticks, &tickslock);
}
release(&tickslock);
return 0;
}
uint64
sys_sbrk(void)
{
uint64 addr;
int n;
uint64 sys_kill(void) {
int pid;
argint(0, &n);
addr = myproc()->sz;
if(growproc(n) < 0)
return -1;
return addr;
}
uint64
sys_sleep(void)
{
int n;
uint ticks0;
argint(0, &n);
acquire(&tickslock);
ticks0 = ticks;
while(ticks - ticks0 < n){
if(killed(myproc())){
release(&tickslock);
return -1;
}
sleep(&ticks, &tickslock);
}
release(&tickslock);
return 0;
}
uint64
sys_kill(void)
{
int pid;
argint(0, &pid);
return kill(pid);
argint(0, &pid);
return kill(pid);
}
// return how many clock tick interrupts have occurred
// since start.
uint64
sys_uptime(void)
{
uint xticks;
uint64 sys_uptime(void) {
uint xticks;
acquire(&tickslock);
xticks = ticks;
release(&tickslock);
return xticks;
acquire(&tickslock);
xticks = ticks;
release(&tickslock);
return xticks;
}

View File

@ -16,157 +16,141 @@ void kernelvec();
extern int devintr();
void
trapinit(void)
{
initlock(&tickslock, "time");
}
void trapinit(void) { initlock(&tickslock, "time"); }
// set up to take exceptions and traps while in the kernel.
void
trapinithart(void)
{
w_stvec((uint64)kernelvec);
}
void trapinithart(void) { w_stvec((uint64)kernelvec); }
//
// handle an interrupt, exception, or system call from user space.
// called from trampoline.S
//
void
usertrap(void)
{
int which_dev = 0;
void usertrap(void) {
int which_dev = 0;
if((r_sstatus() & SSTATUS_SPP) != 0)
panic("usertrap: not from user mode");
if ((r_sstatus() & SSTATUS_SPP) != 0)
panic("usertrap: not from user mode");
// send interrupts and exceptions to kerneltrap(),
// since we're now in the kernel.
w_stvec((uint64)kernelvec);
// send interrupts and exceptions to kerneltrap(),
// since we're now in the kernel.
w_stvec((uint64)kernelvec);
struct proc *p = myproc();
// save user program counter.
p->trapframe->epc = r_sepc();
if(r_scause() == 8){
// system call
struct proc *p = myproc();
if(killed(p))
exit(-1);
// save user program counter.
p->trapframe->epc = r_sepc();
// sepc points to the ecall instruction,
// but we want to return to the next instruction.
p->trapframe->epc += 4;
if (r_scause() == 8) {
// system call
// an interrupt will change sepc, scause, and sstatus,
// so enable only now that we're done with those registers.
intr_on();
if (killed(p))
exit(-1);
syscall();
} else if((which_dev = devintr()) != 0){
// ok
} else {
printf("usertrap(): unexpected scause %p pid=%d\n", r_scause(), p->pid);
printf(" sepc=%p stval=%p\n", r_sepc(), r_stval());
setkilled(p);
}
// sepc points to the ecall instruction,
// but we want to return to the next instruction.
p->trapframe->epc += 4;
if(killed(p))
exit(-1);
// an interrupt will change sepc, scause, and sstatus,
// so enable only now that we're done with those registers.
intr_on();
// give up the CPU if this is a timer interrupt.
if(which_dev == 2)
yield();
syscall();
} else if ((which_dev = devintr()) != 0) {
// ok
} else {
printf("usertrap(): unexpected scause %p pid=%d\n", r_scause(), p->pid);
printf(" sepc=%p stval=%p\n", r_sepc(), r_stval());
setkilled(p);
}
usertrapret();
if (killed(p))
exit(-1);
// give up the CPU if this is a timer interrupt.
if (which_dev == 2)
yield();
usertrapret();
}
//
// return to user space
//
void
usertrapret(void)
{
struct proc *p = myproc();
void usertrapret(void) {
struct proc *p = myproc();
// we're about to switch the destination of traps from
// kerneltrap() to usertrap(), so turn off interrupts until
// we're back in user space, where usertrap() is correct.
intr_off();
// we're about to switch the destination of traps from
// kerneltrap() to usertrap(), so turn off interrupts until
// we're back in user space, where usertrap() is correct.
intr_off();
// send syscalls, interrupts, and exceptions to uservec in trampoline.S
uint64 trampoline_uservec = TRAMPOLINE + (uservec - trampoline);
w_stvec(trampoline_uservec);
// send syscalls, interrupts, and exceptions to uservec in trampoline.S
uint64 trampoline_uservec = TRAMPOLINE + (uservec - trampoline);
w_stvec(trampoline_uservec);
// set up trapframe values that uservec will need when
// the process next traps into the kernel.
p->trapframe->kernel_satp = r_satp(); // kernel page table
p->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stack
p->trapframe->kernel_trap = (uint64)usertrap;
p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
// set up trapframe values that uservec will need when
// the process next traps into the kernel.
p->trapframe->kernel_satp = r_satp(); // kernel page table
p->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stack
p->trapframe->kernel_trap = (uint64)usertrap;
p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
// set up the registers that trampoline.S's sret will use
// to get to user space.
// set S Previous Privilege mode to User.
unsigned long x = r_sstatus();
x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode
x |= SSTATUS_SPIE; // enable interrupts in user mode
w_sstatus(x);
// set up the registers that trampoline.S's sret will use
// to get to user space.
// set S Exception Program Counter to the saved user pc.
w_sepc(p->trapframe->epc);
// set S Previous Privilege mode to User.
unsigned long x = r_sstatus();
x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode
x |= SSTATUS_SPIE; // enable interrupts in user mode
w_sstatus(x);
// tell trampoline.S the user page table to switch to.
uint64 satp = MAKE_SATP(p->pagetable);
// set S Exception Program Counter to the saved user pc.
w_sepc(p->trapframe->epc);
// jump to userret in trampoline.S at the top of memory, which
// switches to the user page table, restores user registers,
// and switches to user mode with sret.
uint64 trampoline_userret = TRAMPOLINE + (userret - trampoline);
((void (*)(uint64))trampoline_userret)(satp);
// tell trampoline.S the user page table to switch to.
uint64 satp = MAKE_SATP(p->pagetable);
// jump to userret in trampoline.S at the top of memory, which
// switches to the user page table, restores user registers,
// and switches to user mode with sret.
uint64 trampoline_userret = TRAMPOLINE + (userret - trampoline);
((void (*)(uint64))trampoline_userret)(satp);
}
// interrupts and exceptions from kernel code go here via kernelvec,
// on whatever the current kernel stack is.
void
kerneltrap()
{
int which_dev = 0;
uint64 sepc = r_sepc();
uint64 sstatus = r_sstatus();
uint64 scause = r_scause();
if((sstatus & SSTATUS_SPP) == 0)
panic("kerneltrap: not from supervisor mode");
if(intr_get() != 0)
panic("kerneltrap: interrupts enabled");
void kerneltrap() {
int which_dev = 0;
uint64 sepc = r_sepc();
uint64 sstatus = r_sstatus();
uint64 scause = r_scause();
if((which_dev = devintr()) == 0){
printf("scause %p\n", scause);
printf("sepc=%p stval=%p\n", r_sepc(), r_stval());
panic("kerneltrap");
}
if ((sstatus & SSTATUS_SPP) == 0)
panic("kerneltrap: not from supervisor mode");
if (intr_get() != 0)
panic("kerneltrap: interrupts enabled");
// give up the CPU if this is a timer interrupt.
if(which_dev == 2 && myproc() != 0 && myproc()->state == RUNNING)
yield();
if ((which_dev = devintr()) == 0) {
printf("scause %p\n", scause);
printf("sepc=%p stval=%p\n", r_sepc(), r_stval());
panic("kerneltrap");
}
// the yield() may have caused some traps to occur,
// so restore trap registers for use by kernelvec.S's sepc instruction.
w_sepc(sepc);
w_sstatus(sstatus);
// give up the CPU if this is a timer interrupt.
if (which_dev == 2 && myproc() != 0 && myproc()->state == RUNNING)
yield();
// the yield() may have caused some traps to occur,
// so restore trap registers for use by kernelvec.S's sepc instruction.
w_sepc(sepc);
w_sstatus(sstatus);
}
void
clockintr()
{
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);
void clockintr() {
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);
}
// check if it's an external interrupt or software interrupt,
@ -174,48 +158,44 @@ clockintr()
// returns 2 if timer interrupt,
// 1 if other device,
// 0 if not recognized.
int
devintr()
{
uint64 scause = r_scause();
int devintr() {
uint64 scause = r_scause();
if((scause & 0x8000000000000000L) &&
(scause & 0xff) == 9){
// this is a supervisor external interrupt, via PLIC.
if ((scause & 0x8000000000000000L) && (scause & 0xff) == 9) {
// this is a supervisor external interrupt, via PLIC.
// irq indicates which device interrupted.
int irq = plic_claim();
// irq indicates which device interrupted.
int irq = plic_claim();
if(irq == UART0_IRQ){
uartintr();
} else if(irq == VIRTIO0_IRQ){
virtio_disk_intr();
} else if(irq){
printf("unexpected interrupt irq=%d\n", irq);
}
if (irq == UART0_IRQ) {
uartintr();
} else if (irq == VIRTIO0_IRQ) {
virtio_disk_intr();
} else if (irq) {
printf("unexpected interrupt irq=%d\n", irq);
}
// the PLIC allows each device to raise at most one
// interrupt at a time; tell the PLIC the device is
// now allowed to interrupt again.
if(irq)
plic_complete(irq);
// the PLIC allows each device to raise at most one
// interrupt at a time; tell the PLIC the device is
// now allowed to interrupt again.
if (irq)
plic_complete(irq);
return 1;
} else if(scause == 0x8000000000000001L){
// software interrupt from a machine-mode timer interrupt,
// forwarded by timervec in kernelvec.S.
return 1;
} else if (scause == 0x8000000000000001L) {
// software interrupt from a machine-mode timer interrupt,
// forwarded by timervec in kernelvec.S.
if(cpuid() == 0){
clockintr();
}
// acknowledge the software interrupt by clearing
// the SSIP bit in sip.
w_sip(r_sip() & ~2);
if (cpuid() == 0) {
clockintr();
}
return 2;
} else {
return 0;
}
// acknowledge the software interrupt by clearing
// the SSIP bit in sip.
w_sip(r_sip() & ~2);
return 2;
} else {
return 0;
}
}

View File

@ -19,21 +19,21 @@
// some have different meanings for
// read vs write.
// see http://byterunner.com/16550.html
#define RHR 0 // receive holding register (for input bytes)
#define THR 0 // transmit holding register (for output bytes)
#define IER 1 // interrupt enable register
#define IER_RX_ENABLE (1<<0)
#define IER_TX_ENABLE (1<<1)
#define FCR 2 // FIFO control register
#define FCR_FIFO_ENABLE (1<<0)
#define FCR_FIFO_CLEAR (3<<1) // clear the content of the two FIFOs
#define ISR 2 // interrupt status register
#define LCR 3 // line control register
#define LCR_EIGHT_BITS (3<<0)
#define LCR_BAUD_LATCH (1<<7) // special mode to set baud rate
#define LSR 5 // line status register
#define LSR_RX_READY (1<<0) // input is waiting to be read from RHR
#define LSR_TX_IDLE (1<<5) // THR can accept another character to send
#define RHR 0 // receive holding register (for input bytes)
#define THR 0 // transmit holding register (for output bytes)
#define IER 1 // interrupt enable register
#define IER_RX_ENABLE (1 << 0)
#define IER_TX_ENABLE (1 << 1)
#define FCR 2 // FIFO control register
#define FCR_FIFO_ENABLE (1 << 0)
#define FCR_FIFO_CLEAR (3 << 1) // clear the content of the two FIFOs
#define ISR 2 // interrupt status register
#define LCR 3 // line control register
#define LCR_EIGHT_BITS (3 << 0)
#define LCR_BAUD_LATCH (1 << 7) // special mode to set baud rate
#define LSR 5 // line status register
#define LSR_RX_READY (1 << 0) // input is waiting to be read from RHR
#define LSR_TX_IDLE (1 << 5) // THR can accept another character to send
#define ReadReg(reg) (*(Reg(reg)))
#define WriteReg(reg, v) (*(Reg(reg)) = (v))
@ -49,32 +49,30 @@ extern volatile int panicked; // from printf.c
void uartstart();
void
uartinit(void)
{
// disable interrupts.
WriteReg(IER, 0x00);
void uartinit(void) {
// disable interrupts.
WriteReg(IER, 0x00);
// special mode to set baud rate.
WriteReg(LCR, LCR_BAUD_LATCH);
// special mode to set baud rate.
WriteReg(LCR, LCR_BAUD_LATCH);
// LSB for baud rate of 38.4K.
WriteReg(0, 0x03);
// LSB for baud rate of 38.4K.
WriteReg(0, 0x03);
// MSB for baud rate of 38.4K.
WriteReg(1, 0x00);
// MSB for baud rate of 38.4K.
WriteReg(1, 0x00);
// leave set-baud mode,
// and set word length to 8 bits, no parity.
WriteReg(LCR, LCR_EIGHT_BITS);
// leave set-baud mode,
// and set word length to 8 bits, no parity.
WriteReg(LCR, LCR_EIGHT_BITS);
// reset and enable FIFOs.
WriteReg(FCR, FCR_FIFO_ENABLE | FCR_FIFO_CLEAR);
// reset and enable FIFOs.
WriteReg(FCR, FCR_FIFO_ENABLE | FCR_FIFO_CLEAR);
// enable transmit and receive interrupts.
WriteReg(IER, IER_TX_ENABLE | IER_RX_ENABLE);
// enable transmit and receive interrupts.
WriteReg(IER, IER_TX_ENABLE | IER_RX_ENABLE);
initlock(&uart_tx_lock, "uart");
initlock(&uart_tx_lock, "uart");
}
// add a character to the output buffer and tell the
@ -83,108 +81,97 @@ uartinit(void)
// because it may block, it can't be called
// from interrupts; it's only suitable for use
// by write().
void
uartputc(int c)
{
acquire(&uart_tx_lock);
void uartputc(int c) {
acquire(&uart_tx_lock);
if(panicked){
for(;;)
;
}
while(uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE){
// buffer is full.
// wait for uartstart() to open up space in the buffer.
sleep(&uart_tx_r, &uart_tx_lock);
}
uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE] = c;
uart_tx_w += 1;
uartstart();
release(&uart_tx_lock);
if (panicked) {
for (;;)
;
}
while (uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE) {
// buffer is full.
// wait for uartstart() to open up space in the buffer.
sleep(&uart_tx_r, &uart_tx_lock);
}
uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE] = c;
uart_tx_w += 1;
uartstart();
release(&uart_tx_lock);
}
// alternate version of uartputc() that doesn't
// alternate version of uartputc() that doesn't
// use interrupts, for use by kernel printf() and
// to echo characters. it spins waiting for the uart's
// output register to be empty.
void
uartputc_sync(int c)
{
push_off();
void uartputc_sync(int c) {
push_off();
if(panicked){
for(;;)
;
}
if (panicked) {
for (;;)
;
}
// wait for Transmit Holding Empty to be set in LSR.
while((ReadReg(LSR) & LSR_TX_IDLE) == 0)
;
WriteReg(THR, c);
// wait for Transmit Holding Empty to be set in LSR.
while ((ReadReg(LSR) & LSR_TX_IDLE) == 0)
;
WriteReg(THR, c);
pop_off();
pop_off();
}
// if the UART is idle, and a character is waiting
// in the transmit buffer, send it.
// caller must hold uart_tx_lock.
// called from both the top- and bottom-half.
void
uartstart()
{
while(1){
if(uart_tx_w == uart_tx_r){
// transmit buffer is empty.
return;
}
if((ReadReg(LSR) & LSR_TX_IDLE) == 0){
// the UART transmit holding register is full,
// so we cannot give it another byte.
// it will interrupt when it's ready for a new byte.
return;
}
int c = uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE];
uart_tx_r += 1;
// maybe uartputc() is waiting for space in the buffer.
wakeup(&uart_tx_r);
WriteReg(THR, c);
}
void uartstart() {
while (1) {
if (uart_tx_w == uart_tx_r) {
// transmit buffer is empty.
return;
}
if ((ReadReg(LSR) & LSR_TX_IDLE) == 0) {
// the UART transmit holding register is full,
// so we cannot give it another byte.
// it will interrupt when it's ready for a new byte.
return;
}
int c = uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE];
uart_tx_r += 1;
// maybe uartputc() is waiting for space in the buffer.
wakeup(&uart_tx_r);
WriteReg(THR, c);
}
}
// read one input character from the UART.
// return -1 if none is waiting.
int
uartgetc(void)
{
if(ReadReg(LSR) & 0x01){
// input data is ready.
return ReadReg(RHR);
} else {
return -1;
}
int uartgetc(void) {
if (ReadReg(LSR) & 0x01) {
// input data is ready.
return ReadReg(RHR);
} else {
return -1;
}
}
// handle a uart interrupt, raised because input has
// arrived, or the uart is ready for more output, or
// both. called from devintr().
void
uartintr(void)
{
// read and process incoming characters.
while(1){
int c = uartgetc();
if(c == -1)
break;
consoleintr(c);
}
void uartintr(void) {
// read and process incoming characters.
while (1) {
int c = uartgetc();
if (c == -1)
break;
consoleintr(c);
}
// send buffered characters.
acquire(&uart_tx_lock);
uartstart();
release(&uart_tx_lock);
// send buffered characters.
acquire(&uart_tx_lock);
uartstart();
release(&uart_tx_lock);
}

View File

@ -2,7 +2,8 @@
// driver for qemu's virtio disk device.
// uses qemu's mmio interface to virtio.
//
// qemu ... -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0
// qemu ... -drive file=fs.img,if=none,format=raw,id=x0 -device
// virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0
//
#include "types.h"
@ -20,308 +21,293 @@
#define R(r) ((volatile uint32 *)(VIRTIO0 + (r)))
static struct disk {
// a set (not a ring) of DMA descriptors, with which the
// driver tells the device where to read and write individual
// disk operations. there are NUM descriptors.
// most commands consist of a "chain" (a linked list) of a couple of
// these descriptors.
struct virtq_desc *desc;
// a set (not a ring) of DMA descriptors, with which the
// driver tells the device where to read and write individual
// disk operations. there are NUM descriptors.
// most commands consist of a "chain" (a linked list) of a couple of
// these descriptors.
struct virtq_desc *desc;
// a ring in which the driver writes descriptor numbers
// that the driver would like the device to process. it only
// includes the head descriptor of each chain. the ring has
// NUM elements.
struct virtq_avail *avail;
// a ring in which the driver writes descriptor numbers
// that the driver would like the device to process. it only
// includes the head descriptor of each chain. the ring has
// NUM elements.
struct virtq_avail *avail;
// a ring in which the device writes descriptor numbers that
// the device has finished processing (just the head of each chain).
// there are NUM used ring entries.
struct virtq_used *used;
// a ring in which the device writes descriptor numbers that
// the device has finished processing (just the head of each chain).
// there are NUM used ring entries.
struct virtq_used *used;
// our own book-keeping.
char free[NUM]; // is a descriptor free?
uint16 used_idx; // we've looked this far in used[2..NUM].
// our own book-keeping.
char free[NUM]; // is a descriptor free?
uint16 used_idx; // we've looked this far in used[2..NUM].
// track info about in-flight operations,
// for use when completion interrupt arrives.
// indexed by first descriptor index of chain.
struct {
struct buf *b;
char status;
} info[NUM];
// track info about in-flight operations,
// for use when completion interrupt arrives.
// indexed by first descriptor index of chain.
struct {
struct buf *b;
char status;
} info[NUM];
// disk command headers.
// one-for-one with descriptors, for convenience.
struct virtio_blk_req ops[NUM];
struct spinlock vdisk_lock;
// disk command headers.
// one-for-one with descriptors, for convenience.
struct virtio_blk_req ops[NUM];
struct spinlock vdisk_lock;
} disk;
void
virtio_disk_init(void)
{
uint32 status = 0;
void virtio_disk_init(void) {
uint32 status = 0;
initlock(&disk.vdisk_lock, "virtio_disk");
initlock(&disk.vdisk_lock, "virtio_disk");
if(*R(VIRTIO_MMIO_MAGIC_VALUE) != 0x74726976 ||
*R(VIRTIO_MMIO_VERSION) != 2 ||
*R(VIRTIO_MMIO_DEVICE_ID) != 2 ||
*R(VIRTIO_MMIO_VENDOR_ID) != 0x554d4551){
panic("could not find virtio disk");
}
// reset device
*R(VIRTIO_MMIO_STATUS) = status;
if (*R(VIRTIO_MMIO_MAGIC_VALUE) != 0x74726976 ||
*R(VIRTIO_MMIO_VERSION) != 2 || *R(VIRTIO_MMIO_DEVICE_ID) != 2 ||
*R(VIRTIO_MMIO_VENDOR_ID) != 0x554d4551) {
panic("could not find virtio disk");
}
// set ACKNOWLEDGE status bit
status |= VIRTIO_CONFIG_S_ACKNOWLEDGE;
*R(VIRTIO_MMIO_STATUS) = status;
// reset device
*R(VIRTIO_MMIO_STATUS) = status;
// set DRIVER status bit
status |= VIRTIO_CONFIG_S_DRIVER;
*R(VIRTIO_MMIO_STATUS) = status;
// set ACKNOWLEDGE status bit
status |= VIRTIO_CONFIG_S_ACKNOWLEDGE;
*R(VIRTIO_MMIO_STATUS) = status;
// negotiate features
uint64 features = *R(VIRTIO_MMIO_DEVICE_FEATURES);
features &= ~(1 << VIRTIO_BLK_F_RO);
features &= ~(1 << VIRTIO_BLK_F_SCSI);
features &= ~(1 << VIRTIO_BLK_F_CONFIG_WCE);
features &= ~(1 << VIRTIO_BLK_F_MQ);
features &= ~(1 << VIRTIO_F_ANY_LAYOUT);
features &= ~(1 << VIRTIO_RING_F_EVENT_IDX);
features &= ~(1 << VIRTIO_RING_F_INDIRECT_DESC);
*R(VIRTIO_MMIO_DRIVER_FEATURES) = features;
// set DRIVER status bit
status |= VIRTIO_CONFIG_S_DRIVER;
*R(VIRTIO_MMIO_STATUS) = status;
// tell device that feature negotiation is complete.
status |= VIRTIO_CONFIG_S_FEATURES_OK;
*R(VIRTIO_MMIO_STATUS) = status;
// negotiate features
uint64 features = *R(VIRTIO_MMIO_DEVICE_FEATURES);
features &= ~(1 << VIRTIO_BLK_F_RO);
features &= ~(1 << VIRTIO_BLK_F_SCSI);
features &= ~(1 << VIRTIO_BLK_F_CONFIG_WCE);
features &= ~(1 << VIRTIO_BLK_F_MQ);
features &= ~(1 << VIRTIO_F_ANY_LAYOUT);
features &= ~(1 << VIRTIO_RING_F_EVENT_IDX);
features &= ~(1 << VIRTIO_RING_F_INDIRECT_DESC);
*R(VIRTIO_MMIO_DRIVER_FEATURES) = features;
// re-read status to ensure FEATURES_OK is set.
status = *R(VIRTIO_MMIO_STATUS);
if(!(status & VIRTIO_CONFIG_S_FEATURES_OK))
panic("virtio disk FEATURES_OK unset");
// tell device that feature negotiation is complete.
status |= VIRTIO_CONFIG_S_FEATURES_OK;
*R(VIRTIO_MMIO_STATUS) = status;
// initialize queue 0.
*R(VIRTIO_MMIO_QUEUE_SEL) = 0;
// re-read status to ensure FEATURES_OK is set.
status = *R(VIRTIO_MMIO_STATUS);
if (!(status & VIRTIO_CONFIG_S_FEATURES_OK))
panic("virtio disk FEATURES_OK unset");
// ensure queue 0 is not in use.
if(*R(VIRTIO_MMIO_QUEUE_READY))
panic("virtio disk should not be ready");
// initialize queue 0.
*R(VIRTIO_MMIO_QUEUE_SEL) = 0;
// check maximum queue size.
uint32 max = *R(VIRTIO_MMIO_QUEUE_NUM_MAX);
if(max == 0)
panic("virtio disk has no queue 0");
if(max < NUM)
panic("virtio disk max queue too short");
// ensure queue 0 is not in use.
if (*R(VIRTIO_MMIO_QUEUE_READY))
panic("virtio disk should not be ready");
// allocate and zero queue memory.
disk.desc = kalloc();
disk.avail = kalloc();
disk.used = kalloc();
if(!disk.desc || !disk.avail || !disk.used)
panic("virtio disk kalloc");
memset(disk.desc, 0, PGSIZE);
memset(disk.avail, 0, PGSIZE);
memset(disk.used, 0, PGSIZE);
// check maximum queue size.
uint32 max = *R(VIRTIO_MMIO_QUEUE_NUM_MAX);
if (max == 0)
panic("virtio disk has no queue 0");
if (max < NUM)
panic("virtio disk max queue too short");
// set queue size.
*R(VIRTIO_MMIO_QUEUE_NUM) = NUM;
// allocate and zero queue memory.
disk.desc = kalloc();
disk.avail = kalloc();
disk.used = kalloc();
if (!disk.desc || !disk.avail || !disk.used)
panic("virtio disk kalloc");
memset(disk.desc, 0, PGSIZE);
memset(disk.avail, 0, PGSIZE);
memset(disk.used, 0, PGSIZE);
// write physical addresses.
*R(VIRTIO_MMIO_QUEUE_DESC_LOW) = (uint64)disk.desc;
*R(VIRTIO_MMIO_QUEUE_DESC_HIGH) = (uint64)disk.desc >> 32;
*R(VIRTIO_MMIO_DRIVER_DESC_LOW) = (uint64)disk.avail;
*R(VIRTIO_MMIO_DRIVER_DESC_HIGH) = (uint64)disk.avail >> 32;
*R(VIRTIO_MMIO_DEVICE_DESC_LOW) = (uint64)disk.used;
*R(VIRTIO_MMIO_DEVICE_DESC_HIGH) = (uint64)disk.used >> 32;
// set queue size.
*R(VIRTIO_MMIO_QUEUE_NUM) = NUM;
// queue is ready.
*R(VIRTIO_MMIO_QUEUE_READY) = 0x1;
// write physical addresses.
*R(VIRTIO_MMIO_QUEUE_DESC_LOW) = (uint64)disk.desc;
*R(VIRTIO_MMIO_QUEUE_DESC_HIGH) = (uint64)disk.desc >> 32;
*R(VIRTIO_MMIO_DRIVER_DESC_LOW) = (uint64)disk.avail;
*R(VIRTIO_MMIO_DRIVER_DESC_HIGH) = (uint64)disk.avail >> 32;
*R(VIRTIO_MMIO_DEVICE_DESC_LOW) = (uint64)disk.used;
*R(VIRTIO_MMIO_DEVICE_DESC_HIGH) = (uint64)disk.used >> 32;
// all NUM descriptors start out unused.
for(int i = 0; i < NUM; i++)
disk.free[i] = 1;
// queue is ready.
*R(VIRTIO_MMIO_QUEUE_READY) = 0x1;
// tell device we're completely ready.
status |= VIRTIO_CONFIG_S_DRIVER_OK;
*R(VIRTIO_MMIO_STATUS) = status;
// all NUM descriptors start out unused.
for (int i = 0; i < NUM; i++)
disk.free[i] = 1;
// plic.c and trap.c arrange for interrupts from VIRTIO0_IRQ.
// tell device we're completely ready.
status |= VIRTIO_CONFIG_S_DRIVER_OK;
*R(VIRTIO_MMIO_STATUS) = status;
// plic.c and trap.c arrange for interrupts from VIRTIO0_IRQ.
}
// find a free descriptor, mark it non-free, return its index.
static int
alloc_desc()
{
for(int i = 0; i < NUM; i++){
if(disk.free[i]){
disk.free[i] = 0;
return i;
}
}
return -1;
static int alloc_desc() {
for (int i = 0; i < NUM; i++) {
if (disk.free[i]) {
disk.free[i] = 0;
return i;
}
}
return -1;
}
// mark a descriptor as free.
static void
free_desc(int i)
{
if(i >= NUM)
panic("free_desc 1");
if(disk.free[i])
panic("free_desc 2");
disk.desc[i].addr = 0;
disk.desc[i].len = 0;
disk.desc[i].flags = 0;
disk.desc[i].next = 0;
disk.free[i] = 1;
wakeup(&disk.free[0]);
static void free_desc(int i) {
if (i >= NUM)
panic("free_desc 1");
if (disk.free[i])
panic("free_desc 2");
disk.desc[i].addr = 0;
disk.desc[i].len = 0;
disk.desc[i].flags = 0;
disk.desc[i].next = 0;
disk.free[i] = 1;
wakeup(&disk.free[0]);
}
// free a chain of descriptors.
static void
free_chain(int i)
{
while(1){
int flag = disk.desc[i].flags;
int nxt = disk.desc[i].next;
free_desc(i);
if(flag & VRING_DESC_F_NEXT)
i = nxt;
else
break;
}
static void free_chain(int i) {
while (1) {
int flag = disk.desc[i].flags;
int nxt = disk.desc[i].next;
free_desc(i);
if (flag & VRING_DESC_F_NEXT)
i = nxt;
else
break;
}
}
// allocate three descriptors (they need not be contiguous).
// disk transfers always use three descriptors.
static int
alloc3_desc(int *idx)
{
for(int i = 0; i < 3; i++){
idx[i] = alloc_desc();
if(idx[i] < 0){
for(int j = 0; j < i; j++)
free_desc(idx[j]);
return -1;
}
}
return 0;
static int alloc3_desc(int *idx) {
for (int i = 0; i < 3; i++) {
idx[i] = alloc_desc();
if (idx[i] < 0) {
for (int j = 0; j < i; j++)
free_desc(idx[j]);
return -1;
}
}
return 0;
}
void
virtio_disk_rw(struct buf *b, int write)
{
uint64 sector = b->blockno * (BSIZE / 512);
void virtio_disk_rw(struct buf *b, int write) {
uint64 sector = b->blockno * (BSIZE / 512);
acquire(&disk.vdisk_lock);
acquire(&disk.vdisk_lock);
// the spec's Section 5.2 says that legacy block operations use
// three descriptors: one for type/reserved/sector, one for the
// data, one for a 1-byte status result.
// the spec's Section 5.2 says that legacy block operations use
// three descriptors: one for type/reserved/sector, one for the
// data, one for a 1-byte status result.
// allocate the three descriptors.
int idx[3];
while(1){
if(alloc3_desc(idx) == 0) {
break;
}
sleep(&disk.free[0], &disk.vdisk_lock);
}
// allocate the three descriptors.
int idx[3];
while (1) {
if (alloc3_desc(idx) == 0) {
break;
}
sleep(&disk.free[0], &disk.vdisk_lock);
}
// format the three descriptors.
// qemu's virtio-blk.c reads them.
// format the three descriptors.
// qemu's virtio-blk.c reads them.
struct virtio_blk_req *buf0 = &disk.ops[idx[0]];
struct virtio_blk_req *buf0 = &disk.ops[idx[0]];
if(write)
buf0->type = VIRTIO_BLK_T_OUT; // write the disk
else
buf0->type = VIRTIO_BLK_T_IN; // read the disk
buf0->reserved = 0;
buf0->sector = sector;
if (write)
buf0->type = VIRTIO_BLK_T_OUT; // write the disk
else
buf0->type = VIRTIO_BLK_T_IN; // read the disk
buf0->reserved = 0;
buf0->sector = sector;
disk.desc[idx[0]].addr = (uint64) buf0;
disk.desc[idx[0]].len = sizeof(struct virtio_blk_req);
disk.desc[idx[0]].flags = VRING_DESC_F_NEXT;
disk.desc[idx[0]].next = idx[1];
disk.desc[idx[0]].addr = (uint64)buf0;
disk.desc[idx[0]].len = sizeof(struct virtio_blk_req);
disk.desc[idx[0]].flags = VRING_DESC_F_NEXT;
disk.desc[idx[0]].next = idx[1];
disk.desc[idx[1]].addr = (uint64) b->data;
disk.desc[idx[1]].len = BSIZE;
if(write)
disk.desc[idx[1]].flags = 0; // device reads b->data
else
disk.desc[idx[1]].flags = VRING_DESC_F_WRITE; // device writes b->data
disk.desc[idx[1]].flags |= VRING_DESC_F_NEXT;
disk.desc[idx[1]].next = idx[2];
disk.desc[idx[1]].addr = (uint64)b->data;
disk.desc[idx[1]].len = BSIZE;
if (write)
disk.desc[idx[1]].flags = 0; // device reads b->data
else
disk.desc[idx[1]].flags = VRING_DESC_F_WRITE; // device writes b->data
disk.desc[idx[1]].flags |= VRING_DESC_F_NEXT;
disk.desc[idx[1]].next = idx[2];
disk.info[idx[0]].status = 0xff; // device writes 0 on success
disk.desc[idx[2]].addr = (uint64) &disk.info[idx[0]].status;
disk.desc[idx[2]].len = 1;
disk.desc[idx[2]].flags = VRING_DESC_F_WRITE; // device writes the status
disk.desc[idx[2]].next = 0;
disk.info[idx[0]].status = 0xff; // device writes 0 on success
disk.desc[idx[2]].addr = (uint64)&disk.info[idx[0]].status;
disk.desc[idx[2]].len = 1;
disk.desc[idx[2]].flags = VRING_DESC_F_WRITE; // device writes the status
disk.desc[idx[2]].next = 0;
// record struct buf for virtio_disk_intr().
b->disk = 1;
disk.info[idx[0]].b = b;
// record struct buf for virtio_disk_intr().
b->disk = 1;
disk.info[idx[0]].b = b;
// tell the device the first index in our chain of descriptors.
disk.avail->ring[disk.avail->idx % NUM] = idx[0];
// tell the device the first index in our chain of descriptors.
disk.avail->ring[disk.avail->idx % NUM] = idx[0];
__sync_synchronize();
__sync_synchronize();
// tell the device another avail ring entry is available.
disk.avail->idx += 1; // not % NUM ...
// tell the device another avail ring entry is available.
disk.avail->idx += 1; // not % NUM ...
__sync_synchronize();
__sync_synchronize();
*R(VIRTIO_MMIO_QUEUE_NOTIFY) = 0; // value is queue number
*R(VIRTIO_MMIO_QUEUE_NOTIFY) = 0; // value is queue number
// Wait for virtio_disk_intr() to say request has finished.
while(b->disk == 1) {
sleep(b, &disk.vdisk_lock);
}
// Wait for virtio_disk_intr() to say request has finished.
while (b->disk == 1) {
sleep(b, &disk.vdisk_lock);
}
disk.info[idx[0]].b = 0;
free_chain(idx[0]);
disk.info[idx[0]].b = 0;
free_chain(idx[0]);
release(&disk.vdisk_lock);
release(&disk.vdisk_lock);
}
void
virtio_disk_intr()
{
acquire(&disk.vdisk_lock);
void virtio_disk_intr() {
acquire(&disk.vdisk_lock);
// the device won't raise another interrupt until we tell it
// we've seen this interrupt, which the following line does.
// this may race with the device writing new entries to
// the "used" ring, in which case we may process the new
// completion entries in this interrupt, and have nothing to do
// in the next interrupt, which is harmless.
*R(VIRTIO_MMIO_INTERRUPT_ACK) = *R(VIRTIO_MMIO_INTERRUPT_STATUS) & 0x3;
// the device won't raise another interrupt until we tell it
// we've seen this interrupt, which the following line does.
// this may race with the device writing new entries to
// the "used" ring, in which case we may process the new
// completion entries in this interrupt, and have nothing to do
// in the next interrupt, which is harmless.
*R(VIRTIO_MMIO_INTERRUPT_ACK) = *R(VIRTIO_MMIO_INTERRUPT_STATUS) & 0x3;
__sync_synchronize();
__sync_synchronize();
// the device increments disk.used->idx when it
// adds an entry to the used ring.
// the device increments disk.used->idx when it
// adds an entry to the used ring.
while(disk.used_idx != disk.used->idx){
__sync_synchronize();
int id = disk.used->ring[disk.used_idx % NUM].id;
while (disk.used_idx != disk.used->idx) {
__sync_synchronize();
int id = disk.used->ring[disk.used_idx % NUM].id;
if(disk.info[id].status != 0)
panic("virtio_disk_intr status");
if (disk.info[id].status != 0)
panic("virtio_disk_intr status");
struct buf *b = disk.info[id].b;
b->disk = 0; // disk is done with buf
wakeup(b);
struct buf *b = disk.info[id].b;
b->disk = 0; // disk is done with buf
wakeup(b);
disk.used_idx += 1;
}
disk.used_idx += 1;
}
release(&disk.vdisk_lock);
release(&disk.vdisk_lock);
}

View File

@ -11,63 +11,56 @@
*/
pagetable_t kernel_pagetable;
extern char etext[]; // kernel.ld sets this to end of kernel code.
extern char etext[]; // kernel.ld sets this to end of kernel code.
extern char trampoline[]; // trampoline.S
// Make a direct-map page table for the kernel.
pagetable_t
kvmmake(void)
{
pagetable_t kpgtbl;
pagetable_t kvmmake(void) {
pagetable_t kpgtbl;
kpgtbl = (pagetable_t) kalloc();
memset(kpgtbl, 0, PGSIZE);
kpgtbl = (pagetable_t)kalloc();
memset(kpgtbl, 0, PGSIZE);
// uart registers
kvmmap(kpgtbl, UART0, UART0, PGSIZE, PTE_R | PTE_W);
// uart registers
kvmmap(kpgtbl, UART0, UART0, PGSIZE, PTE_R | PTE_W);
// virtio mmio disk interface
kvmmap(kpgtbl, VIRTIO0, VIRTIO0, PGSIZE, PTE_R | PTE_W);
// virtio mmio disk interface
kvmmap(kpgtbl, VIRTIO0, VIRTIO0, PGSIZE, PTE_R | PTE_W);
// PLIC
kvmmap(kpgtbl, PLIC, PLIC, 0x400000, PTE_R | PTE_W);
// PLIC
kvmmap(kpgtbl, PLIC, PLIC, 0x400000, PTE_R | PTE_W);
// map kernel text executable and read-only.
kvmmap(kpgtbl, KERNBASE, KERNBASE, (uint64)etext-KERNBASE, PTE_R | PTE_X);
// map kernel text executable and read-only.
kvmmap(kpgtbl, KERNBASE, KERNBASE, (uint64)etext - KERNBASE, PTE_R | PTE_X);
// map kernel data and the physical RAM we'll make use of.
kvmmap(kpgtbl, (uint64)etext, (uint64)etext, PHYSTOP-(uint64)etext, PTE_R | PTE_W);
// map kernel data and the physical RAM we'll make use of.
kvmmap(kpgtbl, (uint64)etext, (uint64)etext, PHYSTOP - (uint64)etext,
PTE_R | PTE_W);
// map the trampoline for trap entry/exit to
// the highest virtual address in the kernel.
kvmmap(kpgtbl, TRAMPOLINE, (uint64)trampoline, PGSIZE, PTE_R | PTE_X);
// map the trampoline for trap entry/exit to
// the highest virtual address in the kernel.
kvmmap(kpgtbl, TRAMPOLINE, (uint64)trampoline, PGSIZE, PTE_R | PTE_X);
// allocate and map a kernel stack for each process.
proc_mapstacks(kpgtbl);
return kpgtbl;
// allocate and map a kernel stack for each process.
proc_mapstacks(kpgtbl);
return kpgtbl;
}
// Initialize the one kernel_pagetable
void
kvminit(void)
{
kernel_pagetable = kvmmake();
}
void kvminit(void) { kernel_pagetable = kvmmake(); }
// Switch h/w page table register to the kernel's page table,
// and enable paging.
void
kvminithart()
{
// wait for any previous writes to the page table memory to finish.
sfence_vma();
void kvminithart() {
// wait for any previous writes to the page table memory to finish.
sfence_vma();
w_satp(MAKE_SATP(kernel_pagetable));
w_satp(MAKE_SATP(kernel_pagetable));
// flush stale entries from the TLB.
sfence_vma();
// flush stale entries from the TLB.
sfence_vma();
}
// Return the address of the PTE in page table pagetable
@ -82,218 +75,198 @@ kvminithart()
// 21..29 -- 9 bits of level-1 index.
// 12..20 -- 9 bits of level-0 index.
// 0..11 -- 12 bits of byte offset within the page.
pte_t *
walk(pagetable_t pagetable, uint64 va, int alloc)
{
if(va >= MAXVA)
panic("walk");
pte_t *walk(pagetable_t pagetable, uint64 va, int alloc) {
if (va >= MAXVA)
panic("walk");
for(int level = 2; level > 0; level--) {
pte_t *pte = &pagetable[PX(level, va)];
if(*pte & PTE_V) {
pagetable = (pagetable_t)PTE2PA(*pte);
} else {
if(!alloc || (pagetable = (pde_t*)kalloc()) == 0)
return 0;
memset(pagetable, 0, PGSIZE);
*pte = PA2PTE(pagetable) | PTE_V;
}
}
return &pagetable[PX(0, va)];
for (int level = 2; level > 0; level--) {
pte_t *pte = &pagetable[PX(level, va)];
if (*pte & PTE_V) {
pagetable = (pagetable_t)PTE2PA(*pte);
} else {
if (!alloc || (pagetable = (pde_t *)kalloc()) == 0)
return 0;
memset(pagetable, 0, PGSIZE);
*pte = PA2PTE(pagetable) | PTE_V;
}
}
return &pagetable[PX(0, va)];
}
// Look up a virtual address, return the physical address,
// or 0 if not mapped.
// Can only be used to look up user pages.
uint64
walkaddr(pagetable_t pagetable, uint64 va)
{
pte_t *pte;
uint64 pa;
uint64 walkaddr(pagetable_t pagetable, uint64 va) {
pte_t *pte;
uint64 pa;
if(va >= MAXVA)
return 0;
if (va >= MAXVA)
return 0;
pte = walk(pagetable, va, 0);
if(pte == 0)
return 0;
if((*pte & PTE_V) == 0)
return 0;
if((*pte & PTE_U) == 0)
return 0;
pa = PTE2PA(*pte);
return pa;
pte = walk(pagetable, va, 0);
if (pte == 0)
return 0;
if ((*pte & PTE_V) == 0)
return 0;
if ((*pte & PTE_U) == 0)
return 0;
pa = PTE2PA(*pte);
return pa;
}
// add a mapping to the kernel page table.
// only used when booting.
// does not flush TLB or enable paging.
void
kvmmap(pagetable_t kpgtbl, uint64 va, uint64 pa, uint64 sz, int perm)
{
if(mappages(kpgtbl, va, sz, pa, perm) != 0)
panic("kvmmap");
void kvmmap(pagetable_t kpgtbl, uint64 va, uint64 pa, uint64 sz, int perm) {
if (mappages(kpgtbl, va, sz, pa, perm) != 0)
panic("kvmmap");
}
// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned. Returns 0 on success, -1 if walk() couldn't
// allocate a needed page-table page.
int
mappages(pagetable_t pagetable, uint64 va, uint64 size, uint64 pa, int perm)
{
uint64 a, last;
pte_t *pte;
int mappages(pagetable_t pagetable, uint64 va, uint64 size, uint64 pa,
int perm) {
uint64 a, last;
pte_t *pte;
if(size == 0)
panic("mappages: size");
a = PGROUNDDOWN(va);
last = PGROUNDDOWN(va + size - 1);
for(;;){
if((pte = walk(pagetable, a, 1)) == 0)
return -1;
if(*pte & PTE_V)
panic("mappages: remap");
*pte = PA2PTE(pa) | perm | PTE_V;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return 0;
if (size == 0)
panic("mappages: size");
a = PGROUNDDOWN(va);
last = PGROUNDDOWN(va + size - 1);
for (;;) {
if ((pte = walk(pagetable, a, 1)) == 0)
return -1;
if (*pte & PTE_V)
panic("mappages: remap");
*pte = PA2PTE(pa) | perm | PTE_V;
if (a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return 0;
}
// Remove npages of mappings starting from va. va must be
// page-aligned. The mappings must exist.
// Optionally free the physical memory.
void
uvmunmap(pagetable_t pagetable, uint64 va, uint64 npages, int do_free)
{
uint64 a;
pte_t *pte;
void uvmunmap(pagetable_t pagetable, uint64 va, uint64 npages, int do_free) {
uint64 a;
pte_t *pte;
if((va % PGSIZE) != 0)
panic("uvmunmap: not aligned");
if ((va % PGSIZE) != 0)
panic("uvmunmap: not aligned");
for(a = va; a < va + npages*PGSIZE; a += PGSIZE){
if((pte = walk(pagetable, a, 0)) == 0)
panic("uvmunmap: walk");
if((*pte & PTE_V) == 0)
panic("uvmunmap: not mapped");
if(PTE_FLAGS(*pte) == PTE_V)
panic("uvmunmap: not a leaf");
if(do_free){
uint64 pa = PTE2PA(*pte);
kfree((void*)pa);
}
*pte = 0;
}
for (a = va; a < va + npages * PGSIZE; a += PGSIZE) {
if ((pte = walk(pagetable, a, 0)) == 0)
panic("uvmunmap: walk");
if ((*pte & PTE_V) == 0)
panic("uvmunmap: not mapped");
if (PTE_FLAGS(*pte) == PTE_V)
panic("uvmunmap: not a leaf");
if (do_free) {
uint64 pa = PTE2PA(*pte);
kfree((void *)pa);
}
*pte = 0;
}
}
// create an empty user page table.
// returns 0 if out of memory.
pagetable_t
uvmcreate()
{
pagetable_t pagetable;
pagetable = (pagetable_t) kalloc();
if(pagetable == 0)
return 0;
memset(pagetable, 0, PGSIZE);
return pagetable;
pagetable_t uvmcreate() {
pagetable_t pagetable;
pagetable = (pagetable_t)kalloc();
if (pagetable == 0)
return 0;
memset(pagetable, 0, PGSIZE);
return pagetable;
}
// Load the user initcode into address 0 of pagetable,
// for the very first process.
// sz must be less than a page.
void
uvmfirst(pagetable_t pagetable, uchar *src, uint sz)
{
char *mem;
void uvmfirst(pagetable_t pagetable, uchar *src, uint sz) {
char *mem;
if(sz >= PGSIZE)
panic("uvmfirst: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pagetable, 0, PGSIZE, (uint64)mem, PTE_W|PTE_R|PTE_X|PTE_U);
memmove(mem, src, sz);
if (sz >= PGSIZE)
panic("uvmfirst: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pagetable, 0, PGSIZE, (uint64)mem, PTE_W | PTE_R | PTE_X | PTE_U);
memmove(mem, src, sz);
}
// Allocate PTEs and physical memory to grow process from oldsz to
// newsz, which need not be page aligned. Returns new size or 0 on error.
uint64
uvmalloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz, int xperm)
{
char *mem;
uint64 a;
uint64 uvmalloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz, int xperm) {
char *mem;
uint64 a;
if(newsz < oldsz)
return oldsz;
if (newsz < oldsz)
return oldsz;
oldsz = PGROUNDUP(oldsz);
for(a = oldsz; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
uvmdealloc(pagetable, a, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pagetable, a, PGSIZE, (uint64)mem, PTE_R|PTE_U|xperm) != 0){
kfree(mem);
uvmdealloc(pagetable, a, oldsz);
return 0;
}
}
return newsz;
oldsz = PGROUNDUP(oldsz);
for (a = oldsz; a < newsz; a += PGSIZE) {
mem = kalloc();
if (mem == 0) {
uvmdealloc(pagetable, a, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if (mappages(pagetable, a, PGSIZE, (uint64)mem,
PTE_R | PTE_U | xperm) != 0) {
kfree(mem);
uvmdealloc(pagetable, a, oldsz);
return 0;
}
}
return newsz;
}
// Deallocate user pages to bring the process size from oldsz to
// newsz. oldsz and newsz need not be page-aligned, nor does newsz
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
uint64
uvmdealloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz)
{
if(newsz >= oldsz)
return oldsz;
uint64 uvmdealloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz) {
if (newsz >= oldsz)
return oldsz;
if(PGROUNDUP(newsz) < PGROUNDUP(oldsz)){
int npages = (PGROUNDUP(oldsz) - PGROUNDUP(newsz)) / PGSIZE;
uvmunmap(pagetable, PGROUNDUP(newsz), npages, 1);
}
if (PGROUNDUP(newsz) < PGROUNDUP(oldsz)) {
int npages = (PGROUNDUP(oldsz) - PGROUNDUP(newsz)) / PGSIZE;
uvmunmap(pagetable, PGROUNDUP(newsz), npages, 1);
}
return newsz;
return newsz;
}
// Recursively free page-table pages.
// All leaf mappings must already have been removed.
void
freewalk(pagetable_t pagetable)
{
// there are 2^9 = 512 PTEs in a page table.
for(int i = 0; i < 512; i++){
pte_t pte = pagetable[i];
if((pte & PTE_V) && (pte & (PTE_R|PTE_W|PTE_X)) == 0){
// this PTE points to a lower-level page table.
uint64 child = PTE2PA(pte);
freewalk((pagetable_t)child);
pagetable[i] = 0;
} else if(pte & PTE_V){
panic("freewalk: leaf");
}
}
kfree((void*)pagetable);
void freewalk(pagetable_t pagetable) {
// there are 2^9 = 512 PTEs in a page table.
for (int i = 0; i < 512; i++) {
pte_t pte = pagetable[i];
if ((pte & PTE_V) && (pte & (PTE_R | PTE_W | PTE_X)) == 0) {
// this PTE points to a lower-level page table.
uint64 child = PTE2PA(pte);
freewalk((pagetable_t)child);
pagetable[i] = 0;
} else if (pte & PTE_V) {
panic("freewalk: leaf");
}
}
kfree((void *)pagetable);
}
// Free user memory pages,
// then free page-table pages.
void
uvmfree(pagetable_t pagetable, uint64 sz)
{
if(sz > 0)
uvmunmap(pagetable, 0, PGROUNDUP(sz)/PGSIZE, 1);
freewalk(pagetable);
void uvmfree(pagetable_t pagetable, uint64 sz) {
if (sz > 0)
uvmunmap(pagetable, 0, PGROUNDUP(sz) / PGSIZE, 1);
freewalk(pagetable);
}
// Given a parent process's page table, copy
@ -302,138 +275,128 @@ uvmfree(pagetable_t pagetable, uint64 sz)
// physical memory.
// returns 0 on success, -1 on failure.
// frees any allocated pages on failure.
int
uvmcopy(pagetable_t old, pagetable_t new, uint64 sz)
{
pte_t *pte;
uint64 pa, i;
uint flags;
char *mem;
int uvmcopy(pagetable_t old, pagetable_t new, uint64 sz) {
pte_t *pte;
uint64 pa, i;
uint flags;
char *mem;
for(i = 0; i < sz; i += PGSIZE){
if((pte = walk(old, i, 0)) == 0)
panic("uvmcopy: pte should exist");
if((*pte & PTE_V) == 0)
panic("uvmcopy: page not present");
pa = PTE2PA(*pte);
flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0)
goto err;
memmove(mem, (char*)pa, PGSIZE);
if(mappages(new, i, PGSIZE, (uint64)mem, flags) != 0){
kfree(mem);
goto err;
}
}
return 0;
for (i = 0; i < sz; i += PGSIZE) {
if ((pte = walk(old, i, 0)) == 0)
panic("uvmcopy: pte should exist");
if ((*pte & PTE_V) == 0)
panic("uvmcopy: page not present");
pa = PTE2PA(*pte);
flags = PTE_FLAGS(*pte);
if ((mem = kalloc()) == 0)
goto err;
memmove(mem, (char *)pa, PGSIZE);
if (mappages(new, i, PGSIZE, (uint64)mem, flags) != 0) {
kfree(mem);
goto err;
}
}
return 0;
err:
uvmunmap(new, 0, i / PGSIZE, 1);
return -1;
err:
uvmunmap(new, 0, i / PGSIZE, 1);
return -1;
}
// mark a PTE invalid for user access.
// used by exec for the user stack guard page.
void
uvmclear(pagetable_t pagetable, uint64 va)
{
pte_t *pte;
pte = walk(pagetable, va, 0);
if(pte == 0)
panic("uvmclear");
*pte &= ~PTE_U;
void uvmclear(pagetable_t pagetable, uint64 va) {
pte_t *pte;
pte = walk(pagetable, va, 0);
if (pte == 0)
panic("uvmclear");
*pte &= ~PTE_U;
}
// Copy from kernel to user.
// Copy len bytes from src to virtual address dstva in a given page table.
// Return 0 on success, -1 on error.
int
copyout(pagetable_t pagetable, uint64 dstva, char *src, uint64 len)
{
uint64 n, va0, pa0;
int copyout(pagetable_t pagetable, uint64 dstva, char *src, uint64 len) {
uint64 n, va0, pa0;
while(len > 0){
va0 = PGROUNDDOWN(dstva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (dstva - va0);
if(n > len)
n = len;
memmove((void *)(pa0 + (dstva - va0)), src, n);
while (len > 0) {
va0 = PGROUNDDOWN(dstva);
pa0 = walkaddr(pagetable, va0);
if (pa0 == 0)
return -1;
n = PGSIZE - (dstva - va0);
if (n > len)
n = len;
memmove((void *)(pa0 + (dstva - va0)), src, n);
len -= n;
src += n;
dstva = va0 + PGSIZE;
}
return 0;
len -= n;
src += n;
dstva = va0 + PGSIZE;
}
return 0;
}
// Copy from user to kernel.
// Copy len bytes to dst from virtual address srcva in a given page table.
// Return 0 on success, -1 on error.
int
copyin(pagetable_t pagetable, char *dst, uint64 srcva, uint64 len)
{
uint64 n, va0, pa0;
int copyin(pagetable_t pagetable, char *dst, uint64 srcva, uint64 len) {
uint64 n, va0, pa0;
while(len > 0){
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (srcva - va0);
if(n > len)
n = len;
memmove(dst, (void *)(pa0 + (srcva - va0)), n);
while (len > 0) {
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if (pa0 == 0)
return -1;
n = PGSIZE - (srcva - va0);
if (n > len)
n = len;
memmove(dst, (void *)(pa0 + (srcva - va0)), n);
len -= n;
dst += n;
srcva = va0 + PGSIZE;
}
return 0;
len -= n;
dst += n;
srcva = va0 + PGSIZE;
}
return 0;
}
// Copy a null-terminated string from user to kernel.
// Copy bytes to dst from virtual address srcva in a given page table,
// until a '\0', or max.
// Return 0 on success, -1 on error.
int
copyinstr(pagetable_t pagetable, char *dst, uint64 srcva, uint64 max)
{
uint64 n, va0, pa0;
int got_null = 0;
int copyinstr(pagetable_t pagetable, char *dst, uint64 srcva, uint64 max) {
uint64 n, va0, pa0;
int got_null = 0;
while(got_null == 0 && max > 0){
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (srcva - va0);
if(n > max)
n = max;
while (got_null == 0 && max > 0) {
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if (pa0 == 0)
return -1;
n = PGSIZE - (srcva - va0);
if (n > max)
n = max;
char *p = (char *) (pa0 + (srcva - va0));
while(n > 0){
if(*p == '\0'){
*dst = '\0';
got_null = 1;
break;
} else {
*dst = *p;
}
--n;
--max;
p++;
dst++;
}
char *p = (char *)(pa0 + (srcva - va0));
while (n > 0) {
if (*p == '\0') {
*dst = '\0';
got_null = 1;
break;
} else {
*dst = *p;
}
--n;
--max;
p++;
dst++;
}
srcva = va0 + PGSIZE;
}
if(got_null){
return 0;
} else {
return -1;
}
srcva = va0 + PGSIZE;
}
if (got_null) {
return 0;
} else {
return -1;
}
}

View File

@ -5,14 +5,19 @@
#include <fcntl.h>
#include <assert.h>
#define stat xv6_stat // avoid clash with host struct stat
#define stat xv6_stat // avoid clash with host struct stat
#include "kernel/types.h"
#include "kernel/fs.h"
#include "kernel/stat.h"
#include "kernel/param.h"
#ifndef static_assert
#define static_assert(a, b) do { switch (0) case 0: case (a): ; } while (0)
#define static_assert(a, b) \
do { \
switch (0) \
case 0: \
case (a):; \
} while (0)
#endif
#define NINODES 200
@ -20,11 +25,11 @@
// Disk layout:
// [ boot block | sb block | log | inode blocks | free bit map | data blocks ]
int nbitmap = FSSIZE/(BSIZE*8) + 1;
int nbitmap = FSSIZE / (BSIZE * 8) + 1;
int ninodeblocks = NINODES / IPB + 1;
int nlog = LOGSIZE;
int nmeta; // Number of meta blocks (boot, sb, nlog, inode, bitmap)
int nblocks; // Number of data blocks
int nmeta; // Number of meta blocks (boot, sb, nlog, inode, bitmap)
int nblocks; // Number of data blocks
int fsfd;
struct superblock sb;
@ -32,10 +37,9 @@ char zeroes[BSIZE];
uint freeinode = 1;
uint freeblock;
void balloc(int);
void wsect(uint, void*);
void winode(uint, struct dinode*);
void wsect(uint, void *);
void winode(uint, struct dinode *);
void rinode(uint inum, struct dinode *ip);
void rsect(uint sec, void *buf);
uint ialloc(ushort type);
@ -43,259 +47,237 @@ void iappend(uint inum, void *p, int n);
void die(const char *);
// convert to riscv byte order
ushort
xshort(ushort x)
{
ushort y;
uchar *a = (uchar*)&y;
a[0] = x;
a[1] = x >> 8;
return y;
ushort xshort(ushort x) {
ushort y;
uchar *a = (uchar *)&y;
a[0] = x;
a[1] = x >> 8;
return y;
}
uint
xint(uint x)
{
uint y;
uchar *a = (uchar*)&y;
a[0] = x;
a[1] = x >> 8;
a[2] = x >> 16;
a[3] = x >> 24;
return y;
uint xint(uint x) {
uint y;
uchar *a = (uchar *)&y;
a[0] = x;
a[1] = x >> 8;
a[2] = x >> 16;
a[3] = x >> 24;
return y;
}
int
main(int argc, char *argv[])
{
int i, cc, fd;
uint rootino, inum, off;
struct dirent de;
char buf[BSIZE];
struct dinode din;
int main(int argc, char *argv[]) {
int i, cc, fd;
uint rootino, inum, off;
struct dirent de;
char buf[BSIZE];
struct dinode din;
static_assert(sizeof(int) == 4, "Integers must be 4 bytes!");
static_assert(sizeof(int) == 4, "Integers must be 4 bytes!");
if (argc < 2) {
fprintf(stderr, "Usage: mkfs fs.img files...\n");
exit(1);
}
if(argc < 2){
fprintf(stderr, "Usage: mkfs fs.img files...\n");
exit(1);
}
assert((BSIZE % sizeof(struct dinode)) == 0);
assert((BSIZE % sizeof(struct dirent)) == 0);
assert((BSIZE % sizeof(struct dinode)) == 0);
assert((BSIZE % sizeof(struct dirent)) == 0);
fsfd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0666);
if (fsfd < 0)
die(argv[1]);
fsfd = open(argv[1], O_RDWR|O_CREAT|O_TRUNC, 0666);
if(fsfd < 0)
die(argv[1]);
// 1 fs block = 1 disk sector
nmeta = 2 + nlog + ninodeblocks + nbitmap;
nblocks = FSSIZE - nmeta;
// 1 fs block = 1 disk sector
nmeta = 2 + nlog + ninodeblocks + nbitmap;
nblocks = FSSIZE - nmeta;
sb.magic = FSMAGIC;
sb.size = xint(FSSIZE);
sb.nblocks = xint(nblocks);
sb.ninodes = xint(NINODES);
sb.nlog = xint(nlog);
sb.logstart = xint(2);
sb.inodestart = xint(2 + nlog);
sb.bmapstart = xint(2 + nlog + ninodeblocks);
sb.magic = FSMAGIC;
sb.size = xint(FSSIZE);
sb.nblocks = xint(nblocks);
sb.ninodes = xint(NINODES);
sb.nlog = xint(nlog);
sb.logstart = xint(2);
sb.inodestart = xint(2+nlog);
sb.bmapstart = xint(2+nlog+ninodeblocks);
printf("nmeta %d (boot, super, log blocks %u inode blocks %u, bitmap "
"blocks %u) blocks %d total %d\n",
nmeta, nlog, ninodeblocks, nbitmap, nblocks, FSSIZE);
printf("nmeta %d (boot, super, log blocks %u inode blocks %u, bitmap blocks %u) blocks %d total %d\n",
nmeta, nlog, ninodeblocks, nbitmap, nblocks, FSSIZE);
freeblock = nmeta; // the first free block that we can allocate
freeblock = nmeta; // the first free block that we can allocate
for (i = 0; i < FSSIZE; i++)
wsect(i, zeroes);
for(i = 0; i < FSSIZE; i++)
wsect(i, zeroes);
memset(buf, 0, sizeof(buf));
memmove(buf, &sb, sizeof(sb));
wsect(1, buf);
memset(buf, 0, sizeof(buf));
memmove(buf, &sb, sizeof(sb));
wsect(1, buf);
rootino = ialloc(T_DIR);
assert(rootino == ROOTINO);
rootino = ialloc(T_DIR);
assert(rootino == ROOTINO);
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, ".");
iappend(rootino, &de, sizeof(de));
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, ".");
iappend(rootino, &de, sizeof(de));
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, "..");
iappend(rootino, &de, sizeof(de));
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, "..");
iappend(rootino, &de, sizeof(de));
for (i = 2; i < argc; i++) {
// get rid of "user/"
char *shortname;
if (strncmp(argv[i], "user/", 5) == 0)
shortname = argv[i] + 5;
else
shortname = argv[i];
for(i = 2; i < argc; i++){
// get rid of "user/"
char *shortname;
if(strncmp(argv[i], "user/", 5) == 0)
shortname = argv[i] + 5;
else
shortname = argv[i];
assert(index(shortname, '/') == 0);
assert(index(shortname, '/') == 0);
if((fd = open(argv[i], 0)) < 0)
die(argv[i]);
if ((fd = open(argv[i], 0)) < 0)
die(argv[i]);
// Skip leading _ in name when writing to file system.
// The binaries are named _rm, _cat, etc. to keep the
// build operating system from trying to execute them
// in place of system binaries like rm and cat.
if(shortname[0] == '_')
shortname += 1;
// Skip leading _ in name when writing to file system.
// The binaries are named _rm, _cat, etc. to keep the
// build operating system from trying to execute them
// in place of system binaries like rm and cat.
if (shortname[0] == '_')
shortname += 1;
inum = ialloc(T_FILE);
inum = ialloc(T_FILE);
bzero(&de, sizeof(de));
de.inum = xshort(inum);
strncpy(de.name, shortname, DIRSIZ);
iappend(rootino, &de, sizeof(de));
bzero(&de, sizeof(de));
de.inum = xshort(inum);
strncpy(de.name, shortname, DIRSIZ);
iappend(rootino, &de, sizeof(de));
while((cc = read(fd, buf, sizeof(buf))) > 0)
iappend(inum, buf, cc);
while ((cc = read(fd, buf, sizeof(buf))) > 0)
iappend(inum, buf, cc);
close(fd);
}
close(fd);
}
// fix size of root inode dir
rinode(rootino, &din);
off = xint(din.size);
off = ((off/BSIZE) + 1) * BSIZE;
din.size = xint(off);
winode(rootino, &din);
// fix size of root inode dir
rinode(rootino, &din);
off = xint(din.size);
off = ((off / BSIZE) + 1) * BSIZE;
din.size = xint(off);
winode(rootino, &din);
balloc(freeblock);
balloc(freeblock);
exit(0);
exit(0);
}
void
wsect(uint sec, void *buf)
{
if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE)
die("lseek");
if(write(fsfd, buf, BSIZE) != BSIZE)
die("write");
void wsect(uint sec, void *buf) {
if (lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE)
die("lseek");
if (write(fsfd, buf, BSIZE) != BSIZE)
die("write");
}
void
winode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
struct dinode *dip;
void winode(uint inum, struct dinode *ip) {
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*dip = *ip;
wsect(bn, buf);
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode *)buf) + (inum % IPB);
*dip = *ip;
wsect(bn, buf);
}
void
rinode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
struct dinode *dip;
void rinode(uint inum, struct dinode *ip) {
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*ip = *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode *)buf) + (inum % IPB);
*ip = *dip;
}
void
rsect(uint sec, void *buf)
{
if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE)
die("lseek");
if(read(fsfd, buf, BSIZE) != BSIZE)
die("read");
void rsect(uint sec, void *buf) {
if (lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE)
die("lseek");
if (read(fsfd, buf, BSIZE) != BSIZE)
die("read");
}
uint
ialloc(ushort type)
{
uint inum = freeinode++;
struct dinode din;
uint ialloc(ushort type) {
uint inum = freeinode++;
struct dinode din;
bzero(&din, sizeof(din));
din.type = xshort(type);
din.nlink = xshort(1);
din.size = xint(0);
winode(inum, &din);
return inum;
bzero(&din, sizeof(din));
din.type = xshort(type);
din.nlink = xshort(1);
din.size = xint(0);
winode(inum, &din);
return inum;
}
void
balloc(int used)
{
uchar buf[BSIZE];
int i;
void balloc(int used) {
uchar buf[BSIZE];
int i;
printf("balloc: first %d blocks have been allocated\n", used);
assert(used < BSIZE*8);
bzero(buf, BSIZE);
for(i = 0; i < used; i++){
buf[i/8] = buf[i/8] | (0x1 << (i%8));
}
printf("balloc: write bitmap block at sector %d\n", sb.bmapstart);
wsect(sb.bmapstart, buf);
printf("balloc: first %d blocks have been allocated\n", used);
assert(used < BSIZE * 8);
bzero(buf, BSIZE);
for (i = 0; i < used; i++) {
buf[i / 8] = buf[i / 8] | (0x1 << (i % 8));
}
printf("balloc: write bitmap block at sector %d\n", sb.bmapstart);
wsect(sb.bmapstart, buf);
}
#define min(a, b) ((a) < (b) ? (a) : (b))
void
iappend(uint inum, void *xp, int n)
{
char *p = (char*)xp;
uint fbn, off, n1;
struct dinode din;
char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
void iappend(uint inum, void *xp, int n) {
char *p = (char *)xp;
uint fbn, off, n1;
struct dinode din;
char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
rinode(inum, &din);
off = xint(din.size);
// printf("append inum %d at off %d sz %d\n", inum, off, n);
while(n > 0){
fbn = off / BSIZE;
assert(fbn < MAXFILE);
if(fbn < NDIRECT){
if(xint(din.addrs[fbn]) == 0){
din.addrs[fbn] = xint(freeblock++);
}
x = xint(din.addrs[fbn]);
} else {
if(xint(din.addrs[NDIRECT]) == 0){
din.addrs[NDIRECT] = xint(freeblock++);
}
rsect(xint(din.addrs[NDIRECT]), (char*)indirect);
if(indirect[fbn - NDIRECT] == 0){
indirect[fbn - NDIRECT] = xint(freeblock++);
wsect(xint(din.addrs[NDIRECT]), (char*)indirect);
}
x = xint(indirect[fbn-NDIRECT]);
}
n1 = min(n, (fbn + 1) * BSIZE - off);
rsect(x, buf);
bcopy(p, buf + off - (fbn * BSIZE), n1);
wsect(x, buf);
n -= n1;
off += n1;
p += n1;
}
din.size = xint(off);
winode(inum, &din);
rinode(inum, &din);
off = xint(din.size);
// printf("append inum %d at off %d sz %d\n", inum, off, n);
while (n > 0) {
fbn = off / BSIZE;
assert(fbn < MAXFILE);
if (fbn < NDIRECT) {
if (xint(din.addrs[fbn]) == 0) {
din.addrs[fbn] = xint(freeblock++);
}
x = xint(din.addrs[fbn]);
} else {
if (xint(din.addrs[NDIRECT]) == 0) {
din.addrs[NDIRECT] = xint(freeblock++);
}
rsect(xint(din.addrs[NDIRECT]), (char *)indirect);
if (indirect[fbn - NDIRECT] == 0) {
indirect[fbn - NDIRECT] = xint(freeblock++);
wsect(xint(din.addrs[NDIRECT]), (char *)indirect);
}
x = xint(indirect[fbn - NDIRECT]);
}
n1 = min(n, (fbn + 1) * BSIZE - off);
rsect(x, buf);
bcopy(p, buf + off - (fbn * BSIZE), n1);
wsect(x, buf);
n -= n1;
off += n1;
p += n1;
}
din.size = xint(off);
winode(inum, &din);
}
void
die(const char *s)
{
perror(s);
exit(1);
void die(const char *s) {
perror(s);
exit(1);
}

View File

@ -4,40 +4,36 @@
char buf[512];
void
cat(int fd)
{
int n;
void cat(int fd) {
int n;
while((n = read(fd, buf, sizeof(buf))) > 0) {
if (write(1, buf, n) != n) {
fprintf(2, "cat: write error\n");
exit(1);
}
}
if(n < 0){
fprintf(2, "cat: read error\n");
exit(1);
}
while ((n = read(fd, buf, sizeof(buf))) > 0) {
if (write(1, buf, n) != n) {
fprintf(2, "cat: write error\n");
exit(1);
}
}
if (n < 0) {
fprintf(2, "cat: read error\n");
exit(1);
}
}
int
main(int argc, char *argv[])
{
int fd, i;
int main(int argc, char *argv[]) {
int fd, i;
if(argc <= 1){
cat(0);
exit(0);
}
if (argc <= 1) {
cat(0);
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
fprintf(2, "cat: cannot open %s\n", argv[i]);
exit(1);
}
cat(fd);
close(fd);
}
exit(0);
for (i = 1; i < argc; i++) {
if ((fd = open(argv[i], 0)) < 0) {
fprintf(2, "cat: cannot open %s\n", argv[i]);
exit(1);
}
cat(fd);
close(fd);
}
exit(0);
}

View File

@ -2,18 +2,16 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(int argc, char *argv[])
{
int i;
int main(int argc, char *argv[]) {
int i;
for(i = 1; i < argc; i++){
write(1, argv[i], strlen(argv[i]));
if(i + 1 < argc){
write(1, " ", 1);
} else {
write(1, "\n", 1);
}
}
exit(0);
for (i = 1; i < argc; i++) {
write(1, argv[i], strlen(argv[i]));
if (i + 1 < argc) {
write(1, " ", 1);
} else {
write(1, "\n", 1);
}
}
exit(0);
}

View File

@ -5,52 +5,44 @@
#include "kernel/stat.h"
#include "user/user.h"
#define N 1000
#define N 1000
void
print(const char *s)
{
write(1, s, strlen(s));
void print(const char *s) { write(1, s, strlen(s)); }
void forktest(void) {
int n, pid;
print("fork test\n");
for (n = 0; n < N; n++) {
pid = fork();
if (pid < 0)
break;
if (pid == 0)
exit(0);
}
if (n == N) {
print("fork claimed to work N times!\n");
exit(1);
}
for (; n > 0; n--) {
if (wait(0) < 0) {
print("wait stopped early\n");
exit(1);
}
}
if (wait(0) != -1) {
print("wait got too many\n");
exit(1);
}
print("fork test OK\n");
}
void
forktest(void)
{
int n, pid;
print("fork test\n");
for(n=0; n<N; n++){
pid = fork();
if(pid < 0)
break;
if(pid == 0)
exit(0);
}
if(n == N){
print("fork claimed to work N times!\n");
exit(1);
}
for(; n > 0; n--){
if(wait(0) < 0){
print("wait stopped early\n");
exit(1);
}
}
if(wait(0) != -1){
print("wait got too many\n");
exit(1);
}
print("fork test OK\n");
}
int
main(void)
{
forktest();
exit(0);
int main(void) {
forktest();
exit(0);
}

View File

@ -5,102 +5,93 @@
#include "user/user.h"
char buf[1024];
int match(char*, char*);
int match(char *, char *);
void
grep(char *pattern, int fd)
{
int n, m;
char *p, *q;
void grep(char *pattern, int fd) {
int n, m;
char *p, *q;
m = 0;
while((n = read(fd, buf+m, sizeof(buf)-m-1)) > 0){
m += n;
buf[m] = '\0';
p = buf;
while((q = strchr(p, '\n')) != 0){
*q = 0;
if(match(pattern, p)){
*q = '\n';
write(1, p, q+1 - p);
}
p = q+1;
}
if(m > 0){
m -= p - buf;
memmove(buf, p, m);
}
}
m = 0;
while ((n = read(fd, buf + m, sizeof(buf) - m - 1)) > 0) {
m += n;
buf[m] = '\0';
p = buf;
while ((q = strchr(p, '\n')) != 0) {
*q = 0;
if (match(pattern, p)) {
*q = '\n';
write(1, p, q + 1 - p);
}
p = q + 1;
}
if (m > 0) {
m -= p - buf;
memmove(buf, p, m);
}
}
}
int
main(int argc, char *argv[])
{
int fd, i;
char *pattern;
int main(int argc, char *argv[]) {
int fd, i;
char *pattern;
if(argc <= 1){
fprintf(2, "usage: grep pattern [file ...]\n");
exit(1);
}
pattern = argv[1];
if (argc <= 1) {
fprintf(2, "usage: grep pattern [file ...]\n");
exit(1);
}
pattern = argv[1];
if(argc <= 2){
grep(pattern, 0);
exit(0);
}
if (argc <= 2) {
grep(pattern, 0);
exit(0);
}
for(i = 2; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
printf("grep: cannot open %s\n", argv[i]);
exit(1);
}
grep(pattern, fd);
close(fd);
}
exit(0);
for (i = 2; i < argc; i++) {
if ((fd = open(argv[i], 0)) < 0) {
printf("grep: cannot open %s\n", argv[i]);
exit(1);
}
grep(pattern, fd);
close(fd);
}
exit(0);
}
// Regexp matcher from Kernighan & Pike,
// The Practice of Programming, Chapter 9, or
// https://www.cs.princeton.edu/courses/archive/spr09/cos333/beautiful.html
int matchhere(char*, char*);
int matchstar(int, char*, char*);
int matchhere(char *, char *);
int matchstar(int, char *, char *);
int
match(char *re, char *text)
{
if(re[0] == '^')
return matchhere(re+1, text);
do{ // must look at empty string
if(matchhere(re, text))
return 1;
}while(*text++ != '\0');
return 0;
int match(char *re, char *text) {
if (re[0] == '^')
return matchhere(re + 1, text);
do { // must look at empty string
if (matchhere(re, text))
return 1;
} while (*text++ != '\0');
return 0;
}
// matchhere: search for re at beginning of text
int matchhere(char *re, char *text)
{
if(re[0] == '\0')
return 1;
if(re[1] == '*')
return matchstar(re[0], re+2, text);
if(re[0] == '$' && re[1] == '\0')
return *text == '\0';
if(*text!='\0' && (re[0]=='.' || re[0]==*text))
return matchhere(re+1, text+1);
return 0;
int matchhere(char *re, char *text) {
if (re[0] == '\0')
return 1;
if (re[1] == '*')
return matchstar(re[0], re + 2, text);
if (re[0] == '$' && re[1] == '\0')
return *text == '\0';
if (*text != '\0' && (re[0] == '.' || re[0] == *text))
return matchhere(re + 1, text + 1);
return 0;
}
// matchstar: search for c*re at beginning of text
int matchstar(int c, char *re, char *text)
{
do{ // a * matches zero or more instances
if(matchhere(re, text))
return 1;
}while(*text!='\0' && (*text++==c || c=='.'));
return 0;
int matchstar(int c, char *re, char *text) {
do { // a * matches zero or more instances
if (matchhere(re, text))
return 1;
} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;
}

View File

@ -13,339 +13,328 @@
#include "kernel/riscv.h"
// from FreeBSD.
int
do_rand(unsigned long *ctx)
{
/*
* Compute x = (7^5 * x) mod (2^31 - 1)
* without overflowing 31 bits:
* (2^31 - 1) = 127773 * (7^5) + 2836
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
long hi, lo, x;
int do_rand(unsigned long *ctx) {
/*
* Compute x = (7^5 * x) mod (2^31 - 1)
* without overflowing 31 bits:
* (2^31 - 1) = 127773 * (7^5) + 2836
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
long hi, lo, x;
/* Transform to [1, 0x7ffffffe] range. */
x = (*ctx % 0x7ffffffe) + 1;
hi = x / 127773;
lo = x % 127773;
x = 16807 * lo - 2836 * hi;
if (x < 0)
x += 0x7fffffff;
/* Transform to [0, 0x7ffffffd] range. */
x--;
*ctx = x;
return (x);
/* Transform to [1, 0x7ffffffe] range. */
x = (*ctx % 0x7ffffffe) + 1;
hi = x / 127773;
lo = x % 127773;
x = 16807 * lo - 2836 * hi;
if (x < 0)
x += 0x7fffffff;
/* Transform to [0, 0x7ffffffd] range. */
x--;
*ctx = x;
return (x);
}
unsigned long rand_next = 1;
int
rand(void)
{
return (do_rand(&rand_next));
int rand(void) { return (do_rand(&rand_next)); }
void go(int which_child) {
int fd = -1;
static char buf[999];
char *break0 = sbrk(0);
uint64 iters = 0;
mkdir("grindir");
if (chdir("grindir") != 0) {
printf("grind: chdir grindir failed\n");
exit(1);
}
chdir("/");
while (1) {
iters++;
if ((iters % 500) == 0)
write(1, which_child ? "B" : "A", 1);
int what = rand() % 23;
if (what == 1) {
close(open("grindir/../a", O_CREATE | O_RDWR));
} else if (what == 2) {
close(open("grindir/../grindir/../b", O_CREATE | O_RDWR));
} else if (what == 3) {
unlink("grindir/../a");
} else if (what == 4) {
if (chdir("grindir") != 0) {
printf("grind: chdir grindir failed\n");
exit(1);
}
unlink("../b");
chdir("/");
} else if (what == 5) {
close(fd);
fd = open("/grindir/../a", O_CREATE | O_RDWR);
} else if (what == 6) {
close(fd);
fd = open("/./grindir/./../b", O_CREATE | O_RDWR);
} else if (what == 7) {
write(fd, buf, sizeof(buf));
} else if (what == 8) {
read(fd, buf, sizeof(buf));
} else if (what == 9) {
mkdir("grindir/../a");
close(open("a/../a/./a", O_CREATE | O_RDWR));
unlink("a/a");
} else if (what == 10) {
mkdir("/../b");
close(open("grindir/../b/b", O_CREATE | O_RDWR));
unlink("b/b");
} else if (what == 11) {
unlink("b");
link("../grindir/./../a", "../b");
} else if (what == 12) {
unlink("../grindir/../a");
link(".././b", "/grindir/../a");
} else if (what == 13) {
int pid = fork();
if (pid == 0) {
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if (what == 14) {
int pid = fork();
if (pid == 0) {
fork();
fork();
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if (what == 15) {
sbrk(6011);
} else if (what == 16) {
if (sbrk(0) > break0)
sbrk(-(sbrk(0) - break0));
} else if (what == 17) {
int pid = fork();
if (pid == 0) {
close(open("a", O_CREATE | O_RDWR));
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
if (chdir("../grindir/..") != 0) {
printf("grind: chdir failed\n");
exit(1);
}
kill(pid);
wait(0);
} else if (what == 18) {
int pid = fork();
if (pid == 0) {
kill(getpid());
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if (what == 19) {
int fds[2];
if (pipe(fds) < 0) {
printf("grind: pipe failed\n");
exit(1);
}
int pid = fork();
if (pid == 0) {
fork();
fork();
if (write(fds[1], "x", 1) != 1)
printf("grind: pipe write failed\n");
char c;
if (read(fds[0], &c, 1) != 1)
printf("grind: pipe read failed\n");
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
close(fds[0]);
close(fds[1]);
wait(0);
} else if (what == 20) {
int pid = fork();
if (pid == 0) {
unlink("a");
mkdir("a");
chdir("a");
unlink("../a");
fd = open("x", O_CREATE | O_RDWR);
unlink("x");
exit(0);
} else if (pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if (what == 21) {
unlink("c");
// should always succeed. check that there are free i-nodes,
// file descriptors, blocks.
int fd1 = open("c", O_CREATE | O_RDWR);
if (fd1 < 0) {
printf("grind: create c failed\n");
exit(1);
}
if (write(fd1, "x", 1) != 1) {
printf("grind: write c failed\n");
exit(1);
}
struct stat st;
if (fstat(fd1, &st) != 0) {
printf("grind: fstat failed\n");
exit(1);
}
if (st.size != 1) {
printf("grind: fstat reports wrong size %d\n", (int)st.size);
exit(1);
}
if (st.ino > 200) {
printf("grind: fstat reports crazy i-number %d\n", st.ino);
exit(1);
}
close(fd1);
unlink("c");
} else if (what == 22) {
// echo hi | cat
int aa[2], bb[2];
if (pipe(aa) < 0) {
fprintf(2, "grind: pipe failed\n");
exit(1);
}
if (pipe(bb) < 0) {
fprintf(2, "grind: pipe failed\n");
exit(1);
}
int pid1 = fork();
if (pid1 == 0) {
close(bb[0]);
close(bb[1]);
close(aa[0]);
close(1);
if (dup(aa[1]) != 1) {
fprintf(2, "grind: dup failed\n");
exit(1);
}
close(aa[1]);
char *args[3] = {"echo", "hi", 0};
exec("grindir/../echo", args);
fprintf(2, "grind: echo: not found\n");
exit(2);
} else if (pid1 < 0) {
fprintf(2, "grind: fork failed\n");
exit(3);
}
int pid2 = fork();
if (pid2 == 0) {
close(aa[1]);
close(bb[0]);
close(0);
if (dup(aa[0]) != 0) {
fprintf(2, "grind: dup failed\n");
exit(4);
}
close(aa[0]);
close(1);
if (dup(bb[1]) != 1) {
fprintf(2, "grind: dup failed\n");
exit(5);
}
close(bb[1]);
char *args[2] = {"cat", 0};
exec("/cat", args);
fprintf(2, "grind: cat: not found\n");
exit(6);
} else if (pid2 < 0) {
fprintf(2, "grind: fork failed\n");
exit(7);
}
close(aa[0]);
close(aa[1]);
close(bb[1]);
char buf[4] = {0, 0, 0, 0};
read(bb[0], buf + 0, 1);
read(bb[0], buf + 1, 1);
read(bb[0], buf + 2, 1);
close(bb[0]);
int st1, st2;
wait(&st1);
wait(&st2);
if (st1 != 0 || st2 != 0 || strcmp(buf, "hi\n") != 0) {
printf("grind: exec pipeline failed %d %d \"%s\"\n", st1, st2,
buf);
exit(1);
}
}
}
}
void
go(int which_child)
{
int fd = -1;
static char buf[999];
char *break0 = sbrk(0);
uint64 iters = 0;
void iter() {
unlink("a");
unlink("b");
mkdir("grindir");
if(chdir("grindir") != 0){
printf("grind: chdir grindir failed\n");
exit(1);
}
chdir("/");
while(1){
iters++;
if((iters % 500) == 0)
write(1, which_child?"B":"A", 1);
int what = rand() % 23;
if(what == 1){
close(open("grindir/../a", O_CREATE|O_RDWR));
} else if(what == 2){
close(open("grindir/../grindir/../b", O_CREATE|O_RDWR));
} else if(what == 3){
unlink("grindir/../a");
} else if(what == 4){
if(chdir("grindir") != 0){
printf("grind: chdir grindir failed\n");
exit(1);
}
unlink("../b");
chdir("/");
} else if(what == 5){
close(fd);
fd = open("/grindir/../a", O_CREATE|O_RDWR);
} else if(what == 6){
close(fd);
fd = open("/./grindir/./../b", O_CREATE|O_RDWR);
} else if(what == 7){
write(fd, buf, sizeof(buf));
} else if(what == 8){
read(fd, buf, sizeof(buf));
} else if(what == 9){
mkdir("grindir/../a");
close(open("a/../a/./a", O_CREATE|O_RDWR));
unlink("a/a");
} else if(what == 10){
mkdir("/../b");
close(open("grindir/../b/b", O_CREATE|O_RDWR));
unlink("b/b");
} else if(what == 11){
unlink("b");
link("../grindir/./../a", "../b");
} else if(what == 12){
unlink("../grindir/../a");
link(".././b", "/grindir/../a");
} else if(what == 13){
int pid = fork();
if(pid == 0){
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 14){
int pid = fork();
if(pid == 0){
fork();
fork();
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 15){
sbrk(6011);
} else if(what == 16){
if(sbrk(0) > break0)
sbrk(-(sbrk(0) - break0));
} else if(what == 17){
int pid = fork();
if(pid == 0){
close(open("a", O_CREATE|O_RDWR));
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
if(chdir("../grindir/..") != 0){
printf("grind: chdir failed\n");
exit(1);
}
kill(pid);
wait(0);
} else if(what == 18){
int pid = fork();
if(pid == 0){
kill(getpid());
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 19){
int fds[2];
if(pipe(fds) < 0){
printf("grind: pipe failed\n");
exit(1);
}
int pid = fork();
if(pid == 0){
fork();
fork();
if(write(fds[1], "x", 1) != 1)
printf("grind: pipe write failed\n");
char c;
if(read(fds[0], &c, 1) != 1)
printf("grind: pipe read failed\n");
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
close(fds[0]);
close(fds[1]);
wait(0);
} else if(what == 20){
int pid = fork();
if(pid == 0){
unlink("a");
mkdir("a");
chdir("a");
unlink("../a");
fd = open("x", O_CREATE|O_RDWR);
unlink("x");
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 21){
unlink("c");
// should always succeed. check that there are free i-nodes,
// file descriptors, blocks.
int fd1 = open("c", O_CREATE|O_RDWR);
if(fd1 < 0){
printf("grind: create c failed\n");
exit(1);
}
if(write(fd1, "x", 1) != 1){
printf("grind: write c failed\n");
exit(1);
}
struct stat st;
if(fstat(fd1, &st) != 0){
printf("grind: fstat failed\n");
exit(1);
}
if(st.size != 1){
printf("grind: fstat reports wrong size %d\n", (int)st.size);
exit(1);
}
if(st.ino > 200){
printf("grind: fstat reports crazy i-number %d\n", st.ino);
exit(1);
}
close(fd1);
unlink("c");
} else if(what == 22){
// echo hi | cat
int aa[2], bb[2];
if(pipe(aa) < 0){
fprintf(2, "grind: pipe failed\n");
exit(1);
}
if(pipe(bb) < 0){
fprintf(2, "grind: pipe failed\n");
exit(1);
}
int pid1 = fork();
if(pid1 == 0){
close(bb[0]);
close(bb[1]);
close(aa[0]);
close(1);
if(dup(aa[1]) != 1){
fprintf(2, "grind: dup failed\n");
exit(1);
}
close(aa[1]);
char *args[3] = { "echo", "hi", 0 };
exec("grindir/../echo", args);
fprintf(2, "grind: echo: not found\n");
exit(2);
} else if(pid1 < 0){
fprintf(2, "grind: fork failed\n");
exit(3);
}
int pid2 = fork();
if(pid2 == 0){
close(aa[1]);
close(bb[0]);
close(0);
if(dup(aa[0]) != 0){
fprintf(2, "grind: dup failed\n");
exit(4);
}
close(aa[0]);
close(1);
if(dup(bb[1]) != 1){
fprintf(2, "grind: dup failed\n");
exit(5);
}
close(bb[1]);
char *args[2] = { "cat", 0 };
exec("/cat", args);
fprintf(2, "grind: cat: not found\n");
exit(6);
} else if(pid2 < 0){
fprintf(2, "grind: fork failed\n");
exit(7);
}
close(aa[0]);
close(aa[1]);
close(bb[1]);
char buf[4] = { 0, 0, 0, 0 };
read(bb[0], buf+0, 1);
read(bb[0], buf+1, 1);
read(bb[0], buf+2, 1);
close(bb[0]);
int st1, st2;
wait(&st1);
wait(&st2);
if(st1 != 0 || st2 != 0 || strcmp(buf, "hi\n") != 0){
printf("grind: exec pipeline failed %d %d \"%s\"\n", st1, st2, buf);
exit(1);
}
}
}
int pid1 = fork();
if (pid1 < 0) {
printf("grind: fork failed\n");
exit(1);
}
if (pid1 == 0) {
rand_next ^= 31;
go(0);
exit(0);
}
int pid2 = fork();
if (pid2 < 0) {
printf("grind: fork failed\n");
exit(1);
}
if (pid2 == 0) {
rand_next ^= 7177;
go(1);
exit(0);
}
int st1 = -1;
wait(&st1);
if (st1 != 0) {
kill(pid1);
kill(pid2);
}
int st2 = -1;
wait(&st2);
exit(0);
}
void
iter()
{
unlink("a");
unlink("b");
int pid1 = fork();
if(pid1 < 0){
printf("grind: fork failed\n");
exit(1);
}
if(pid1 == 0){
rand_next ^= 31;
go(0);
exit(0);
}
int pid2 = fork();
if(pid2 < 0){
printf("grind: fork failed\n");
exit(1);
}
if(pid2 == 0){
rand_next ^= 7177;
go(1);
exit(0);
}
int st1 = -1;
wait(&st1);
if(st1 != 0){
kill(pid1);
kill(pid2);
}
int st2 = -1;
wait(&st2);
exit(0);
}
int
main()
{
while(1){
int pid = fork();
if(pid == 0){
iter();
exit(0);
}
if(pid > 0){
wait(0);
}
sleep(20);
rand_next += 1;
}
int main() {
while (1) {
int pid = fork();
if (pid == 0) {
iter();
exit(0);
}
if (pid > 0) {
wait(0);
}
sleep(20);
rand_next += 1;
}
}

View File

@ -9,46 +9,44 @@
#include "user/user.h"
#include "kernel/fcntl.h"
char *argv[] = { "sh", 0 };
char *argv[] = {"sh", 0};
int
main(void)
{
int pid, wpid;
int main(void) {
int pid, wpid;
if(open("console", O_RDWR) < 0){
mknod("console", CONSOLE, 0);
open("console", O_RDWR);
}
dup(0); // stdout
dup(0); // stderr
if (open("console", O_RDWR) < 0) {
mknod("console", CONSOLE, 0);
open("console", O_RDWR);
}
dup(0); // stdout
dup(0); // stderr
for(;;){
printf("init: starting sh\n");
pid = fork();
if(pid < 0){
printf("init: fork failed\n");
exit(1);
}
if(pid == 0){
exec("sh", argv);
printf("init: exec sh failed\n");
exit(1);
}
for (;;) {
printf("init: starting sh\n");
pid = fork();
if (pid < 0) {
printf("init: fork failed\n");
exit(1);
}
if (pid == 0) {
exec("sh", argv);
printf("init: exec sh failed\n");
exit(1);
}
for(;;){
// this call to wait() returns if the shell exits,
// or if a parentless process exits.
wpid = wait((int *) 0);
if(wpid == pid){
// the shell exited; restart it.
break;
} else if(wpid < 0){
printf("init: wait returned an error\n");
exit(1);
} else {
// it was a parentless process; do nothing.
}
}
}
for (;;) {
// this call to wait() returns if the shell exits,
// or if a parentless process exits.
wpid = wait((int *)0);
if (wpid == pid) {
// the shell exited; restart it.
break;
} else if (wpid < 0) {
printf("init: wait returned an error\n");
exit(1);
} else {
// it was a parentless process; do nothing.
}
}
}
}

View File

@ -2,16 +2,14 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(int argc, char **argv)
{
int i;
int main(int argc, char **argv) {
int i;
if(argc < 2){
fprintf(2, "usage: kill pid...\n");
exit(1);
}
for(i=1; i<argc; i++)
kill(atoi(argv[i]));
exit(0);
if (argc < 2) {
fprintf(2, "usage: kill pid...\n");
exit(1);
}
for (i = 1; i < argc; i++)
kill(atoi(argv[i]));
exit(0);
}

View File

@ -2,14 +2,12 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(int argc, char *argv[])
{
if(argc != 3){
fprintf(2, "Usage: ln old new\n");
exit(1);
}
if(link(argv[1], argv[2]) < 0)
fprintf(2, "link %s %s: failed\n", argv[1], argv[2]);
exit(0);
int main(int argc, char *argv[]) {
if (argc != 3) {
fprintf(2, "Usage: ln old new\n");
exit(1);
}
if (link(argv[1], argv[2]) < 0)
fprintf(2, "link %s %s: failed\n", argv[1], argv[2]);
exit(0);
}

132
user/ls.c
View File

@ -3,84 +3,78 @@
#include "user/user.h"
#include "kernel/fs.h"
char*
fmtname(char *path)
{
static char buf[DIRSIZ+1];
char *p;
char *fmtname(char *path) {
static char buf[DIRSIZ + 1];
char *p;
// Find first character after last slash.
for(p=path+strlen(path); p >= path && *p != '/'; p--)
;
p++;
// Find first character after last slash.
for (p = path + strlen(path); p >= path && *p != '/'; p--)
;
p++;
// Return blank-padded name.
if(strlen(p) >= DIRSIZ)
return p;
memmove(buf, p, strlen(p));
memset(buf+strlen(p), ' ', DIRSIZ-strlen(p));
return buf;
// Return blank-padded name.
if (strlen(p) >= DIRSIZ)
return p;
memmove(buf, p, strlen(p));
memset(buf + strlen(p), ' ', DIRSIZ - strlen(p));
return buf;
}
void
ls(char *path)
{
char buf[512], *p;
int fd;
struct dirent de;
struct stat st;
void ls(char *path) {
char buf[512], *p;
int fd;
struct dirent de;
struct stat st;
if((fd = open(path, 0)) < 0){
fprintf(2, "ls: cannot open %s\n", path);
return;
}
if ((fd = open(path, 0)) < 0) {
fprintf(2, "ls: cannot open %s\n", path);
return;
}
if(fstat(fd, &st) < 0){
fprintf(2, "ls: cannot stat %s\n", path);
close(fd);
return;
}
if (fstat(fd, &st) < 0) {
fprintf(2, "ls: cannot stat %s\n", path);
close(fd);
return;
}
switch(st.type){
case T_DEVICE:
case T_FILE:
printf("%s %d %d %l\n", fmtname(path), st.type, st.ino, st.size);
break;
switch (st.type) {
case T_DEVICE:
case T_FILE:
printf("%s %d %d %l\n", fmtname(path), st.type, st.ino, st.size);
break;
case T_DIR:
if(strlen(path) + 1 + DIRSIZ + 1 > sizeof buf){
printf("ls: path too long\n");
break;
}
strcpy(buf, path);
p = buf+strlen(buf);
*p++ = '/';
while(read(fd, &de, sizeof(de)) == sizeof(de)){
if(de.inum == 0)
continue;
memmove(p, de.name, DIRSIZ);
p[DIRSIZ] = 0;
if(stat(buf, &st) < 0){
printf("ls: cannot stat %s\n", buf);
continue;
}
printf("%s %d %d %d\n", fmtname(buf), st.type, st.ino, st.size);
}
break;
}
close(fd);
case T_DIR:
if (strlen(path) + 1 + DIRSIZ + 1 > sizeof buf) {
printf("ls: path too long\n");
break;
}
strcpy(buf, path);
p = buf + strlen(buf);
*p++ = '/';
while (read(fd, &de, sizeof(de)) == sizeof(de)) {
if (de.inum == 0)
continue;
memmove(p, de.name, DIRSIZ);
p[DIRSIZ] = 0;
if (stat(buf, &st) < 0) {
printf("ls: cannot stat %s\n", buf);
continue;
}
printf("%s %d %d %d\n", fmtname(buf), st.type, st.ino, st.size);
}
break;
}
close(fd);
}
int
main(int argc, char *argv[])
{
int i;
int main(int argc, char *argv[]) {
int i;
if(argc < 2){
ls(".");
exit(0);
}
for(i=1; i<argc; i++)
ls(argv[i]);
exit(0);
if (argc < 2) {
ls(".");
exit(0);
}
for (i = 1; i < argc; i++)
ls(argv[i]);
exit(0);
}

View File

@ -2,22 +2,20 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(int argc, char *argv[])
{
int i;
int main(int argc, char *argv[]) {
int i;
if(argc < 2){
fprintf(2, "Usage: mkdir files...\n");
exit(1);
}
if (argc < 2) {
fprintf(2, "Usage: mkdir files...\n");
exit(1);
}
for(i = 1; i < argc; i++){
if(mkdir(argv[i]) < 0){
fprintf(2, "mkdir: %s failed to create\n", argv[i]);
break;
}
}
for (i = 1; i < argc; i++) {
if (mkdir(argv[i]) < 0) {
fprintf(2, "mkdir: %s failed to create\n", argv[i]);
break;
}
}
exit(0);
exit(0);
}

View File

@ -6,108 +6,95 @@
static char digits[] = "0123456789ABCDEF";
static void
putc(int fd, char c)
{
write(fd, &c, 1);
static void putc(int fd, char c) { write(fd, &c, 1); }
static void printint(int fd, int xx, int base, int sgn) {
char buf[16];
int i, neg;
uint x;
neg = 0;
if (sgn && xx < 0) {
neg = 1;
x = -xx;
} else {
x = xx;
}
i = 0;
do {
buf[i++] = digits[x % base];
} while ((x /= base) != 0);
if (neg)
buf[i++] = '-';
while (--i >= 0)
putc(fd, buf[i]);
}
static void
printint(int fd, int xx, int base, int sgn)
{
char buf[16];
int i, neg;
uint x;
neg = 0;
if(sgn && xx < 0){
neg = 1;
x = -xx;
} else {
x = xx;
}
i = 0;
do{
buf[i++] = digits[x % base];
}while((x /= base) != 0);
if(neg)
buf[i++] = '-';
while(--i >= 0)
putc(fd, buf[i]);
}
static void
printptr(int fd, uint64 x) {
int i;
putc(fd, '0');
putc(fd, 'x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
putc(fd, digits[x >> (sizeof(uint64) * 8 - 4)]);
static void printptr(int fd, uint64 x) {
int i;
putc(fd, '0');
putc(fd, 'x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
putc(fd, digits[x >> (sizeof(uint64) * 8 - 4)]);
}
// Print to the given fd. Only understands %d, %x, %p, %s.
void
vprintf(int fd, const char *fmt, va_list ap)
{
char *s;
int c, i, state;
void vprintf(int fd, const char *fmt, va_list ap) {
char *s;
int c, i, state;
state = 0;
for(i = 0; fmt[i]; i++){
c = fmt[i] & 0xff;
if(state == 0){
if(c == '%'){
state = '%';
} else {
putc(fd, c);
}
} else if(state == '%'){
if(c == 'd'){
printint(fd, va_arg(ap, int), 10, 1);
} else if(c == 'l') {
printint(fd, va_arg(ap, uint64), 10, 0);
} else if(c == 'x') {
printint(fd, va_arg(ap, int), 16, 0);
} else if(c == 'p') {
printptr(fd, va_arg(ap, uint64));
} else if(c == 's'){
s = va_arg(ap, char*);
if(s == 0)
s = "(null)";
while(*s != 0){
putc(fd, *s);
s++;
}
} else if(c == 'c'){
putc(fd, va_arg(ap, uint));
} else if(c == '%'){
putc(fd, c);
} else {
// Unknown % sequence. Print it to draw attention.
putc(fd, '%');
putc(fd, c);
}
state = 0;
}
}
state = 0;
for (i = 0; fmt[i]; i++) {
c = fmt[i] & 0xff;
if (state == 0) {
if (c == '%') {
state = '%';
} else {
putc(fd, c);
}
} else if (state == '%') {
if (c == 'd') {
printint(fd, va_arg(ap, int), 10, 1);
} else if (c == 'l') {
printint(fd, va_arg(ap, uint64), 10, 0);
} else if (c == 'x') {
printint(fd, va_arg(ap, int), 16, 0);
} else if (c == 'p') {
printptr(fd, va_arg(ap, uint64));
} else if (c == 's') {
s = va_arg(ap, char *);
if (s == 0)
s = "(null)";
while (*s != 0) {
putc(fd, *s);
s++;
}
} else if (c == 'c') {
putc(fd, va_arg(ap, uint));
} else if (c == '%') {
putc(fd, c);
} else {
// Unknown % sequence. Print it to draw attention.
putc(fd, '%');
putc(fd, c);
}
state = 0;
}
}
}
void
fprintf(int fd, const char *fmt, ...)
{
va_list ap;
void fprintf(int fd, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vprintf(fd, fmt, ap);
va_start(ap, fmt);
vprintf(fd, fmt, ap);
}
void
printf(const char *fmt, ...)
{
va_list ap;
void printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vprintf(1, fmt, ap);
va_start(ap, fmt);
vprintf(1, fmt, ap);
}

View File

@ -2,22 +2,20 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(int argc, char *argv[])
{
int i;
int main(int argc, char *argv[]) {
int i;
if(argc < 2){
fprintf(2, "Usage: rm files...\n");
exit(1);
}
if (argc < 2) {
fprintf(2, "Usage: rm files...\n");
exit(1);
}
for(i = 1; i < argc; i++){
if(unlink(argv[i]) < 0){
fprintf(2, "rm: %s failed to delete\n", argv[i]);
break;
}
}
for (i = 1; i < argc; i++) {
if (unlink(argv[i]) < 0) {
fprintf(2, "rm: %s failed to delete\n", argv[i]);
break;
}
}
exit(0);
exit(0);
}

739
user/sh.c
View File

@ -5,490 +5,453 @@
#include "kernel/fcntl.h"
// Parsed command representation
#define EXEC 1
#define EXEC 1
#define REDIR 2
#define PIPE 3
#define LIST 4
#define BACK 5
#define PIPE 3
#define LIST 4
#define BACK 5
#define MAXARGS 10
struct cmd {
int type;
int type;
};
struct execcmd {
int type;
char *argv[MAXARGS];
char *eargv[MAXARGS];
int type;
char *argv[MAXARGS];
char *eargv[MAXARGS];
};
struct redircmd {
int type;
struct cmd *cmd;
char *file;
char *efile;
int mode;
int fd;
int type;
struct cmd *cmd;
char *file;
char *efile;
int mode;
int fd;
};
struct pipecmd {
int type;
struct cmd *left;
struct cmd *right;
int type;
struct cmd *left;
struct cmd *right;
};
struct listcmd {
int type;
struct cmd *left;
struct cmd *right;
int type;
struct cmd *left;
struct cmd *right;
};
struct backcmd {
int type;
struct cmd *cmd;
int type;
struct cmd *cmd;
};
int fork1(void); // Fork but panics on failure.
void panic(char*);
struct cmd *parsecmd(char*);
void runcmd(struct cmd*) __attribute__((noreturn));
int fork1(void); // Fork but panics on failure.
void panic(char *);
struct cmd *parsecmd(char *);
void runcmd(struct cmd *) __attribute__((noreturn));
// Execute cmd. Never returns.
void
runcmd(struct cmd *cmd)
{
int p[2];
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
void runcmd(struct cmd *cmd) {
int p[2];
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
exit(1);
if (cmd == 0)
exit(1);
switch(cmd->type){
default:
panic("runcmd");
switch (cmd->type) {
default:
panic("runcmd");
case EXEC:
ecmd = (struct execcmd*)cmd;
if(ecmd->argv[0] == 0)
exit(1);
exec(ecmd->argv[0], ecmd->argv);
fprintf(2, "exec %s failed\n", ecmd->argv[0]);
break;
case EXEC:
ecmd = (struct execcmd *)cmd;
if (ecmd->argv[0] == 0)
exit(1);
exec(ecmd->argv[0], ecmd->argv);
fprintf(2, "exec %s failed\n", ecmd->argv[0]);
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
close(rcmd->fd);
if(open(rcmd->file, rcmd->mode) < 0){
fprintf(2, "open %s failed\n", rcmd->file);
exit(1);
}
runcmd(rcmd->cmd);
break;
case REDIR:
rcmd = (struct redircmd *)cmd;
close(rcmd->fd);
if (open(rcmd->file, rcmd->mode) < 0) {
fprintf(2, "open %s failed\n", rcmd->file);
exit(1);
}
runcmd(rcmd->cmd);
break;
case LIST:
lcmd = (struct listcmd*)cmd;
if(fork1() == 0)
runcmd(lcmd->left);
wait(0);
runcmd(lcmd->right);
break;
case LIST:
lcmd = (struct listcmd *)cmd;
if (fork1() == 0)
runcmd(lcmd->left);
wait(0);
runcmd(lcmd->right);
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
if(pipe(p) < 0)
panic("pipe");
if(fork1() == 0){
close(1);
dup(p[1]);
close(p[0]);
close(p[1]);
runcmd(pcmd->left);
}
if(fork1() == 0){
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
runcmd(pcmd->right);
}
close(p[0]);
close(p[1]);
wait(0);
wait(0);
break;
case PIPE:
pcmd = (struct pipecmd *)cmd;
if (pipe(p) < 0)
panic("pipe");
if (fork1() == 0) {
close(1);
dup(p[1]);
close(p[0]);
close(p[1]);
runcmd(pcmd->left);
}
if (fork1() == 0) {
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
runcmd(pcmd->right);
}
close(p[0]);
close(p[1]);
wait(0);
wait(0);
break;
case BACK:
bcmd = (struct backcmd*)cmd;
if(fork1() == 0)
runcmd(bcmd->cmd);
break;
}
exit(0);
case BACK:
bcmd = (struct backcmd *)cmd;
if (fork1() == 0)
runcmd(bcmd->cmd);
break;
}
exit(0);
}
int
getcmd(char *buf, int nbuf)
{
write(2, "$ ", 2);
memset(buf, 0, nbuf);
gets(buf, nbuf);
if(buf[0] == 0) // EOF
return -1;
return 0;
int getcmd(char *buf, int nbuf) {
write(2, "$ ", 2);
memset(buf, 0, nbuf);
gets(buf, nbuf);
if (buf[0] == 0) // EOF
return -1;
return 0;
}
int
main(void)
{
static char buf[100];
int fd;
int main(void) {
static char buf[100];
int fd;
// Ensure that three file descriptors are open.
while((fd = open("console", O_RDWR)) >= 0){
if(fd >= 3){
close(fd);
break;
}
}
// Ensure that three file descriptors are open.
while ((fd = open("console", O_RDWR)) >= 0) {
if (fd >= 3) {
close(fd);
break;
}
}
// Read and run input commands.
while(getcmd(buf, sizeof(buf)) >= 0){
if(buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' '){
// Chdir must be called by the parent, not the child.
buf[strlen(buf)-1] = 0; // chop \n
if(chdir(buf+3) < 0)
fprintf(2, "cannot cd %s\n", buf+3);
continue;
}
if(fork1() == 0)
runcmd(parsecmd(buf));
wait(0);
}
exit(0);
// Read and run input commands.
while (getcmd(buf, sizeof(buf)) >= 0) {
if (buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' ') {
// Chdir must be called by the parent, not the child.
buf[strlen(buf) - 1] = 0; // chop \n
if (chdir(buf + 3) < 0)
fprintf(2, "cannot cd %s\n", buf + 3);
continue;
}
if (fork1() == 0)
runcmd(parsecmd(buf));
wait(0);
}
exit(0);
}
void
panic(char *s)
{
fprintf(2, "%s\n", s);
exit(1);
void panic(char *s) {
fprintf(2, "%s\n", s);
exit(1);
}
int
fork1(void)
{
int pid;
int fork1(void) {
int pid;
pid = fork();
if(pid == -1)
panic("fork");
return pid;
pid = fork();
if (pid == -1)
panic("fork");
return pid;
}
//PAGEBREAK!
// Constructors
// PAGEBREAK!
// Constructors
struct cmd*
execcmd(void)
{
struct execcmd *cmd;
struct cmd *execcmd(void) {
struct execcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = EXEC;
return (struct cmd*)cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = EXEC;
return (struct cmd *)cmd;
}
struct cmd*
redircmd(struct cmd *subcmd, char *file, char *efile, int mode, int fd)
{
struct redircmd *cmd;
struct cmd *redircmd(struct cmd *subcmd, char *file, char *efile, int mode,
int fd) {
struct redircmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = REDIR;
cmd->cmd = subcmd;
cmd->file = file;
cmd->efile = efile;
cmd->mode = mode;
cmd->fd = fd;
return (struct cmd*)cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = REDIR;
cmd->cmd = subcmd;
cmd->file = file;
cmd->efile = efile;
cmd->mode = mode;
cmd->fd = fd;
return (struct cmd *)cmd;
}
struct cmd*
pipecmd(struct cmd *left, struct cmd *right)
{
struct pipecmd *cmd;
struct cmd *pipecmd(struct cmd *left, struct cmd *right) {
struct pipecmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = PIPE;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = PIPE;
cmd->left = left;
cmd->right = right;
return (struct cmd *)cmd;
}
struct cmd*
listcmd(struct cmd *left, struct cmd *right)
{
struct listcmd *cmd;
struct cmd *listcmd(struct cmd *left, struct cmd *right) {
struct listcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = LIST;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = LIST;
cmd->left = left;
cmd->right = right;
return (struct cmd *)cmd;
}
struct cmd*
backcmd(struct cmd *subcmd)
{
struct backcmd *cmd;
struct cmd *backcmd(struct cmd *subcmd) {
struct backcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = BACK;
cmd->cmd = subcmd;
return (struct cmd*)cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = BACK;
cmd->cmd = subcmd;
return (struct cmd *)cmd;
}
//PAGEBREAK!
// Parsing
// PAGEBREAK!
// Parsing
char whitespace[] = " \t\r\n\v";
char symbols[] = "<|>&;()";
int
gettoken(char **ps, char *es, char **q, char **eq)
{
char *s;
int ret;
int gettoken(char **ps, char *es, char **q, char **eq) {
char *s;
int ret;
s = *ps;
while(s < es && strchr(whitespace, *s))
s++;
if(q)
*q = s;
ret = *s;
switch(*s){
case 0:
break;
case '|':
case '(':
case ')':
case ';':
case '&':
case '<':
s++;
break;
case '>':
s++;
if(*s == '>'){
ret = '+';
s++;
}
break;
default:
ret = 'a';
while(s < es && !strchr(whitespace, *s) && !strchr(symbols, *s))
s++;
break;
}
if(eq)
*eq = s;
s = *ps;
while (s < es && strchr(whitespace, *s))
s++;
if (q)
*q = s;
ret = *s;
switch (*s) {
case 0:
break;
case '|':
case '(':
case ')':
case ';':
case '&':
case '<':
s++;
break;
case '>':
s++;
if (*s == '>') {
ret = '+';
s++;
}
break;
default:
ret = 'a';
while (s < es && !strchr(whitespace, *s) && !strchr(symbols, *s))
s++;
break;
}
if (eq)
*eq = s;
while(s < es && strchr(whitespace, *s))
s++;
*ps = s;
return ret;
while (s < es && strchr(whitespace, *s))
s++;
*ps = s;
return ret;
}
int
peek(char **ps, char *es, char *toks)
{
char *s;
int peek(char **ps, char *es, char *toks) {
char *s;
s = *ps;
while(s < es && strchr(whitespace, *s))
s++;
*ps = s;
return *s && strchr(toks, *s);
s = *ps;
while (s < es && strchr(whitespace, *s))
s++;
*ps = s;
return *s && strchr(toks, *s);
}
struct cmd *parseline(char**, char*);
struct cmd *parsepipe(char**, char*);
struct cmd *parseexec(char**, char*);
struct cmd *nulterminate(struct cmd*);
struct cmd *parseline(char **, char *);
struct cmd *parsepipe(char **, char *);
struct cmd *parseexec(char **, char *);
struct cmd *nulterminate(struct cmd *);
struct cmd*
parsecmd(char *s)
{
char *es;
struct cmd *cmd;
struct cmd *parsecmd(char *s) {
char *es;
struct cmd *cmd;
es = s + strlen(s);
cmd = parseline(&s, es);
peek(&s, es, "");
if(s != es){
fprintf(2, "leftovers: %s\n", s);
panic("syntax");
}
nulterminate(cmd);
return cmd;
es = s + strlen(s);
cmd = parseline(&s, es);
peek(&s, es, "");
if (s != es) {
fprintf(2, "leftovers: %s\n", s);
panic("syntax");
}
nulterminate(cmd);
return cmd;
}
struct cmd*
parseline(char **ps, char *es)
{
struct cmd *cmd;
struct cmd *parseline(char **ps, char *es) {
struct cmd *cmd;
cmd = parsepipe(ps, es);
while(peek(ps, es, "&")){
gettoken(ps, es, 0, 0);
cmd = backcmd(cmd);
}
if(peek(ps, es, ";")){
gettoken(ps, es, 0, 0);
cmd = listcmd(cmd, parseline(ps, es));
}
return cmd;
cmd = parsepipe(ps, es);
while (peek(ps, es, "&")) {
gettoken(ps, es, 0, 0);
cmd = backcmd(cmd);
}
if (peek(ps, es, ";")) {
gettoken(ps, es, 0, 0);
cmd = listcmd(cmd, parseline(ps, es));
}
return cmd;
}
struct cmd*
parsepipe(char **ps, char *es)
{
struct cmd *cmd;
struct cmd *parsepipe(char **ps, char *es) {
struct cmd *cmd;
cmd = parseexec(ps, es);
if(peek(ps, es, "|")){
gettoken(ps, es, 0, 0);
cmd = pipecmd(cmd, parsepipe(ps, es));
}
return cmd;
cmd = parseexec(ps, es);
if (peek(ps, es, "|")) {
gettoken(ps, es, 0, 0);
cmd = pipecmd(cmd, parsepipe(ps, es));
}
return cmd;
}
struct cmd*
parseredirs(struct cmd *cmd, char **ps, char *es)
{
int tok;
char *q, *eq;
struct cmd *parseredirs(struct cmd *cmd, char **ps, char *es) {
int tok;
char *q, *eq;
while(peek(ps, es, "<>")){
tok = gettoken(ps, es, 0, 0);
if(gettoken(ps, es, &q, &eq) != 'a')
panic("missing file for redirection");
switch(tok){
case '<':
cmd = redircmd(cmd, q, eq, O_RDONLY, 0);
break;
case '>':
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE|O_TRUNC, 1);
break;
case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1);
break;
}
}
return cmd;
while (peek(ps, es, "<>")) {
tok = gettoken(ps, es, 0, 0);
if (gettoken(ps, es, &q, &eq) != 'a')
panic("missing file for redirection");
switch (tok) {
case '<':
cmd = redircmd(cmd, q, eq, O_RDONLY, 0);
break;
case '>':
cmd = redircmd(cmd, q, eq, O_WRONLY | O_CREATE | O_TRUNC, 1);
break;
case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY | O_CREATE, 1);
break;
}
}
return cmd;
}
struct cmd*
parseblock(char **ps, char *es)
{
struct cmd *cmd;
struct cmd *parseblock(char **ps, char *es) {
struct cmd *cmd;
if(!peek(ps, es, "("))
panic("parseblock");
gettoken(ps, es, 0, 0);
cmd = parseline(ps, es);
if(!peek(ps, es, ")"))
panic("syntax - missing )");
gettoken(ps, es, 0, 0);
cmd = parseredirs(cmd, ps, es);
return cmd;
if (!peek(ps, es, "("))
panic("parseblock");
gettoken(ps, es, 0, 0);
cmd = parseline(ps, es);
if (!peek(ps, es, ")"))
panic("syntax - missing )");
gettoken(ps, es, 0, 0);
cmd = parseredirs(cmd, ps, es);
return cmd;
}
struct cmd*
parseexec(char **ps, char *es)
{
char *q, *eq;
int tok, argc;
struct execcmd *cmd;
struct cmd *ret;
struct cmd *parseexec(char **ps, char *es) {
char *q, *eq;
int tok, argc;
struct execcmd *cmd;
struct cmd *ret;
if(peek(ps, es, "("))
return parseblock(ps, es);
if (peek(ps, es, "("))
return parseblock(ps, es);
ret = execcmd();
cmd = (struct execcmd*)ret;
ret = execcmd();
cmd = (struct execcmd *)ret;
argc = 0;
ret = parseredirs(ret, ps, es);
while(!peek(ps, es, "|)&;")){
if((tok=gettoken(ps, es, &q, &eq)) == 0)
break;
if(tok != 'a')
panic("syntax");
cmd->argv[argc] = q;
cmd->eargv[argc] = eq;
argc++;
if(argc >= MAXARGS)
panic("too many args");
ret = parseredirs(ret, ps, es);
}
cmd->argv[argc] = 0;
cmd->eargv[argc] = 0;
return ret;
argc = 0;
ret = parseredirs(ret, ps, es);
while (!peek(ps, es, "|)&;")) {
if ((tok = gettoken(ps, es, &q, &eq)) == 0)
break;
if (tok != 'a')
panic("syntax");
cmd->argv[argc] = q;
cmd->eargv[argc] = eq;
argc++;
if (argc >= MAXARGS)
panic("too many args");
ret = parseredirs(ret, ps, es);
}
cmd->argv[argc] = 0;
cmd->eargv[argc] = 0;
return ret;
}
// NUL-terminate all the counted strings.
struct cmd*
nulterminate(struct cmd *cmd)
{
int i;
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
struct cmd *nulterminate(struct cmd *cmd) {
int i;
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
return 0;
if (cmd == 0)
return 0;
switch(cmd->type){
case EXEC:
ecmd = (struct execcmd*)cmd;
for(i=0; ecmd->argv[i]; i++)
*ecmd->eargv[i] = 0;
break;
switch (cmd->type) {
case EXEC:
ecmd = (struct execcmd *)cmd;
for (i = 0; ecmd->argv[i]; i++)
*ecmd->eargv[i] = 0;
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
nulterminate(rcmd->cmd);
*rcmd->efile = 0;
break;
case REDIR:
rcmd = (struct redircmd *)cmd;
nulterminate(rcmd->cmd);
*rcmd->efile = 0;
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
nulterminate(pcmd->left);
nulterminate(pcmd->right);
break;
case PIPE:
pcmd = (struct pipecmd *)cmd;
nulterminate(pcmd->left);
nulterminate(pcmd->right);
break;
case LIST:
lcmd = (struct listcmd*)cmd;
nulterminate(lcmd->left);
nulterminate(lcmd->right);
break;
case LIST:
lcmd = (struct listcmd *)cmd;
nulterminate(lcmd->left);
nulterminate(lcmd->right);
break;
case BACK:
bcmd = (struct backcmd*)cmd;
nulterminate(bcmd->cmd);
break;
}
return cmd;
case BACK:
bcmd = (struct backcmd *)cmd;
nulterminate(bcmd->cmd);
break;
}
return cmd;
}

View File

@ -13,37 +13,35 @@
#include "kernel/fs.h"
#include "kernel/fcntl.h"
int
main(int argc, char *argv[])
{
int fd, i;
char path[] = "stressfs0";
char data[512];
int main(int argc, char *argv[]) {
int fd, i;
char path[] = "stressfs0";
char data[512];
printf("stressfs starting\n");
memset(data, 'a', sizeof(data));
printf("stressfs starting\n");
memset(data, 'a', sizeof(data));
for(i = 0; i < 4; i++)
if(fork() > 0)
break;
for (i = 0; i < 4; i++)
if (fork() > 0)
break;
printf("write %d\n", i);
printf("write %d\n", i);
path[8] += i;
fd = open(path, O_CREATE | O_RDWR);
for(i = 0; i < 20; i++)
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
close(fd);
path[8] += i;
fd = open(path, O_CREATE | O_RDWR);
for (i = 0; i < 20; i++)
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
close(fd);
printf("read\n");
printf("read\n");
fd = open(path, O_RDONLY);
for (i = 0; i < 20; i++)
read(fd, data, sizeof(data));
close(fd);
fd = open(path, O_RDONLY);
for (i = 0; i < 20; i++)
read(fd, data, sizeof(data));
close(fd);
wait(0);
wait(0);
exit(0);
exit(0);
}

View File

@ -6,142 +6,118 @@
//
// wrapper so that it's OK if main() does not call exit().
//
void
_main()
{
extern int main();
main();
exit(0);
void _main() {
extern int main();
main();
exit(0);
}
char*
strcpy(char *s, const char *t)
{
char *os;
char *strcpy(char *s, const char *t) {
char *os;
os = s;
while((*s++ = *t++) != 0)
;
return os;
os = s;
while ((*s++ = *t++) != 0)
;
return os;
}
int
strcmp(const char *p, const char *q)
{
while(*p && *p == *q)
p++, q++;
return (uchar)*p - (uchar)*q;
int strcmp(const char *p, const char *q) {
while (*p && *p == *q)
p++, q++;
return (uchar)*p - (uchar)*q;
}
uint
strlen(const char *s)
{
int n;
uint strlen(const char *s) {
int n;
for(n = 0; s[n]; n++)
;
return n;
for (n = 0; s[n]; n++)
;
return n;
}
void*
memset(void *dst, int c, uint n)
{
char *cdst = (char *) dst;
int i;
for(i = 0; i < n; i++){
cdst[i] = c;
}
return dst;
void *memset(void *dst, int c, uint n) {
char *cdst = (char *)dst;
int i;
for (i = 0; i < n; i++) {
cdst[i] = c;
}
return dst;
}
char*
strchr(const char *s, char c)
{
for(; *s; s++)
if(*s == c)
return (char*)s;
return 0;
char *strchr(const char *s, char c) {
for (; *s; s++)
if (*s == c)
return (char *)s;
return 0;
}
char*
gets(char *buf, int max)
{
int i, cc;
char c;
char *gets(char *buf, int max) {
int i, cc;
char c;
for(i=0; i+1 < max; ){
cc = read(0, &c, 1);
if(cc < 1)
break;
buf[i++] = c;
if(c == '\n' || c == '\r')
break;
}
buf[i] = '\0';
return buf;
for (i = 0; i + 1 < max;) {
cc = read(0, &c, 1);
if (cc < 1)
break;
buf[i++] = c;
if (c == '\n' || c == '\r')
break;
}
buf[i] = '\0';
return buf;
}
int
stat(const char *n, struct stat *st)
{
int fd;
int r;
int stat(const char *n, struct stat *st) {
int fd;
int r;
fd = open(n, O_RDONLY);
if(fd < 0)
return -1;
r = fstat(fd, st);
close(fd);
return r;
fd = open(n, O_RDONLY);
if (fd < 0)
return -1;
r = fstat(fd, st);
close(fd);
return r;
}
int
atoi(const char *s)
{
int n;
int atoi(const char *s) {
int n;
n = 0;
while('0' <= *s && *s <= '9')
n = n*10 + *s++ - '0';
return n;
n = 0;
while ('0' <= *s && *s <= '9')
n = n * 10 + *s++ - '0';
return n;
}
void*
memmove(void *vdst, const void *vsrc, int n)
{
char *dst;
const char *src;
void *memmove(void *vdst, const void *vsrc, int n) {
char *dst;
const char *src;
dst = vdst;
src = vsrc;
if (src > dst) {
while(n-- > 0)
*dst++ = *src++;
} else {
dst += n;
src += n;
while(n-- > 0)
*--dst = *--src;
}
return vdst;
dst = vdst;
src = vsrc;
if (src > dst) {
while (n-- > 0)
*dst++ = *src++;
} else {
dst += n;
src += n;
while (n-- > 0)
*--dst = *--src;
}
return vdst;
}
int
memcmp(const void *s1, const void *s2, uint n)
{
const char *p1 = s1, *p2 = s2;
while (n-- > 0) {
if (*p1 != *p2) {
return *p1 - *p2;
}
p1++;
p2++;
}
return 0;
int memcmp(const void *s1, const void *s2, uint n) {
const char *p1 = s1, *p2 = s2;
while (n-- > 0) {
if (*p1 != *p2) {
return *p1 - *p2;
}
p1++;
p2++;
}
return 0;
}
void *
memcpy(void *dst, const void *src, uint n)
{
return memmove(dst, src, n);
void *memcpy(void *dst, const void *src, uint n) {
return memmove(dst, src, n);
}

View File

@ -9,11 +9,11 @@
typedef long Align;
union header {
struct {
union header *ptr;
uint size;
} s;
Align x;
struct {
union header *ptr;
uint size;
} s;
Align x;
};
typedef union header Header;
@ -21,70 +21,64 @@ typedef union header Header;
static Header base;
static Header *freep;
void
free(void *ap)
{
Header *bp, *p;
void free(void *ap) {
Header *bp, *p;
bp = (Header*)ap - 1;
for(p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break;
if(bp + bp->s.size == p->s.ptr){
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if(p + p->s.size == bp){
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
bp = (Header *)ap - 1;
for (p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
if (p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break;
if (bp + bp->s.size == p->s.ptr) {
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if (p + p->s.size == bp) {
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}
static Header*
morecore(uint nu)
{
char *p;
Header *hp;
static Header *morecore(uint nu) {
char *p;
Header *hp;
if(nu < 4096)
nu = 4096;
p = sbrk(nu * sizeof(Header));
if(p == (char*)-1)
return 0;
hp = (Header*)p;
hp->s.size = nu;
free((void*)(hp + 1));
return freep;
if (nu < 4096)
nu = 4096;
p = sbrk(nu * sizeof(Header));
if (p == (char *)-1)
return 0;
hp = (Header *)p;
hp->s.size = nu;
free((void *)(hp + 1));
return freep;
}
void*
malloc(uint nbytes)
{
Header *p, *prevp;
uint nunits;
void *malloc(uint nbytes) {
Header *p, *prevp;
uint nunits;
nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
if((prevp = freep) == 0){
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){
if(p->s.size >= nunits){
if(p->s.size == nunits)
prevp->s.ptr = p->s.ptr;
else {
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void*)(p + 1);
}
if(p == freep)
if((p = morecore(nunits)) == 0)
return 0;
}
nunits = (nbytes + sizeof(Header) - 1) / sizeof(Header) + 1;
if ((prevp = freep) == 0) {
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for (p = prevp->s.ptr;; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) {
if (p->s.size == nunits)
prevp->s.ptr = p->s.ptr;
else {
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p + 1);
}
if (p == freep)
if ((p = morecore(nunits)) == 0)
return 0;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -4,51 +4,47 @@
char buf[512];
void
wc(int fd, char *name)
{
int i, n;
int l, w, c, inword;
void wc(int fd, char *name) {
int i, n;
int l, w, c, inword;
l = w = c = 0;
inword = 0;
while((n = read(fd, buf, sizeof(buf))) > 0){
for(i=0; i<n; i++){
c++;
if(buf[i] == '\n')
l++;
if(strchr(" \r\t\n\v", buf[i]))
inword = 0;
else if(!inword){
w++;
inword = 1;
}
}
}
if(n < 0){
printf("wc: read error\n");
exit(1);
}
printf("%d %d %d %s\n", l, w, c, name);
l = w = c = 0;
inword = 0;
while ((n = read(fd, buf, sizeof(buf))) > 0) {
for (i = 0; i < n; i++) {
c++;
if (buf[i] == '\n')
l++;
if (strchr(" \r\t\n\v", buf[i]))
inword = 0;
else if (!inword) {
w++;
inword = 1;
}
}
}
if (n < 0) {
printf("wc: read error\n");
exit(1);
}
printf("%d %d %d %s\n", l, w, c, name);
}
int
main(int argc, char *argv[])
{
int fd, i;
int main(int argc, char *argv[]) {
int fd, i;
if(argc <= 1){
wc(0, "");
exit(0);
}
if (argc <= 1) {
wc(0, "");
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
printf("wc: cannot open %s\n", argv[i]);
exit(1);
}
wc(fd, argv[i]);
close(fd);
}
exit(0);
for (i = 1; i < argc; i++) {
if ((fd = open(argv[i], 0)) < 0) {
printf("wc: cannot open %s\n", argv[i]);
exit(1);
}
wc(fd, argv[i]);
close(fd);
}
exit(0);
}

View File

@ -5,10 +5,8 @@
#include "kernel/stat.h"
#include "user/user.h"
int
main(void)
{
if(fork() > 0)
sleep(5); // Let child exit before parent.
exit(0);
int main(void) {
if (fork() > 0)
sleep(5); // Let child exit before parent.
exit(0);
}