use crate::{ memlayout::UART0, spinlock::{initlock, SpinLock}, }; use core::ptr::{addr_of_mut, null, null_mut}; extern "C" { // spinlock.c fn push_off(); fn pop_off(); fn acquire(spinlock: *mut SpinLock); fn release(spinlock: *mut SpinLock); // console.c fn consoleintr(c: i32); // proc.c fn sleep(chan: *const u64, spinlock: *mut SpinLock); fn wakeup(chan: *const u64); //printf.c static mut panicked: bool; } // the UART control registers are memory-mapped // at address UART0. this macro returns the // address of one of the registers. #[inline] pub fn Reg(reg: u8) -> *mut u8 { (UART0 + reg as u64) as *mut u8 } // the UART control registers. // some have different meanings for // read vs write. // see http://byterunner.com/16550.html const RHR: u8 = 0; // receive holding register (for input bytes) const THR: u8 = 0; // transmit holding register (for output bytes) const IER: u8 = 1; // interrupt enable register const IER_RX_ENABLE: u8 = 1 << 0; const IER_TX_ENABLE: u8 = 1 << 1; const FCR: u8 = 2; // FIFO control register const FCR_FIFO_ENABLE: u8 = 1 << 0; const FCR_FIFO_CLEAR: u8 = 3 << 1; // clear the content of the two FIFOs const ISR: u8 = 2; // interrupt status register const LCR: u8 = 3; // line control register const LCR_EIGHT_BITS: u8 = 3 << 0; const LCR_BAUD_LATCH: u8 = 1 << 7; // special mode to set baud rate const LSR: u8 = 5; // line status register const LSR_RX_READY: u8 = 1 << 0; // input is waiting to be read from RHR const LSR_TX_IDLE: u8 = 1 << 5; // THR can accept another character to send #[inline] pub fn ReadReg(reg: u8) -> u8 { unsafe { *Reg(reg) } } #[inline] pub fn WriteReg(reg: u8, v: u8) { unsafe { *Reg(reg) = v } } // the transmit output buffer. static mut uart_tx_lock: crate::spinlock::SpinLock = crate::spinlock::SpinLock { locked: 0, cpu: null_mut(), name: null(), }; // NOTE: string 'uart\0' for c-implmentation of spinlock. Stupid but works. static UART_LOCK_NAME: [u8; 5] = [0x75, 0x61, 0x72, 0x74, 0]; const UART_TX_BUF_SIZE: usize = 32; static mut uart_tx_buf: [u8; UART_TX_BUF_SIZE] = [0; UART_TX_BUF_SIZE]; static mut uart_tx_w: u64 = 0; // write next to uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE] static mut uart_tx_r: u64 = 0; // read next from uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE] #[no_mangle] pub extern "C" fn uartinit() { // disable interrupts. WriteReg(IER, 0x00); // special mode to set baud rate. WriteReg(LCR, LCR_BAUD_LATCH); // LSB for baud rate of 38.4K. WriteReg(0, 0x03); // MSB for baud rate of 38.4K. WriteReg(1, 0x00); // leave set-baud mode, // and set word length to 8 bits, no parity. WriteReg(LCR, LCR_EIGHT_BITS); // reset and enable FIFOs. WriteReg(FCR, FCR_FIFO_ENABLE | FCR_FIFO_CLEAR); // enable transmit and receive interrupts. WriteReg(IER, IER_TX_ENABLE | IER_RX_ENABLE); unsafe { initlock(addr_of_mut!(uart_tx_lock), UART_LOCK_NAME.as_ptr()); } } #[no_mangle] pub extern "C" fn uartintr() { // read and process incoming characters. unsafe { loop { let c = uartgetc(); if c == -1 { break; } consoleintr(c); } // send buffered characters. acquire(addr_of_mut!(uart_tx_lock)); uartstart(); release(addr_of_mut!(uart_tx_lock)); } } #[no_mangle] pub extern "C" fn uartputc(c: u8) { unsafe { acquire(addr_of_mut!(uart_tx_lock)); if panicked { loop {} } while uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE as u64 { // buffer is full. // wait for uartstart() to open up space in the buffer. sleep(addr_of_mut!(uart_tx_r), addr_of_mut!(uart_tx_lock)); } uart_tx_buf[uart_tx_w as usize % UART_TX_BUF_SIZE] = c; uart_tx_w += 1; uartstart(); release(addr_of_mut!(uart_tx_lock)); } } #[no_mangle] pub extern "C" fn uartputc_sync(c: u8) { unsafe { push_off(); if panicked { loop {} } while ReadReg(LSR) & LSR_TX_IDLE == 0 {} WriteReg(THR, c); pop_off(); } } #[no_mangle] pub unsafe extern "C" fn uartgetc() -> i32 { // TODO: Convert return type to Option if ReadReg(LSR) & 0x01 != 0 { ReadReg(RHR) as i32 } else { -1 } } // if the UART is idle, and a character is waiting // in the transmit buffer, send it. // caller must hold uart_tx_lock. // called from both the top- and bottom-half. fn uartstart() { unsafe { loop { if uart_tx_w == uart_tx_r { // transmit buffer is empty. return; } if (ReadReg(LSR) & LSR_TX_IDLE) == 0 { // the UART transmit holding register is full, // so we cannot give it another byte. // it will interrupt when it's ready for a new byte. return; } let c: u8 = uart_tx_buf[uart_tx_r as usize % UART_TX_BUF_SIZE]; uart_tx_r += 1; // maybe uartputc() is waiting for space in the buffer. wakeup(addr_of_mut!(uart_tx_r)); WriteReg(THR, c); } } }