xv6-riscv-rust/user/usertests.c

2963 lines
57 KiB
C

#include "kernel/param.h"
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "kernel/fs.h"
#include "kernel/fcntl.h"
#include "kernel/syscall.h"
#include "kernel/memlayout.h"
#include "kernel/riscv.h"
//
// Tests xv6 system calls. usertests without arguments runs them all
// and usertests <name> runs <name> test. The test runner creates for
// each test a process and based on the exit status of the process,
// the test runner reports "OK" or "FAILED". Some tests result in
// kernel printing usertrap messages, which can be ignored if test
// prints "OK".
//
#define BUFSZ ((MAXOPBLOCKS + 2) * BSIZE)
char buf[BUFSZ];
//
// Section with tests that run fairly quickly. Use -q if you want to
// run just those. With -q usertests also runs the ones that take a
// fair of time.
//
// what if you pass ridiculous pointers to system calls
// that read user memory with copyin?
void copyin(char *s) {
uint64 addrs[] = {0x80000000LL, 0xffffffffffffffff};
for (int ai = 0; ai < 2; ai++) {
uint64 addr = addrs[ai];
int fd = open("copyin1", O_CREATE | O_WRONLY);
if (fd < 0) {
printf("open(copyin1) failed\n");
exit(1);
}
int n = write(fd, (void *)addr, 8192);
if (n >= 0) {
printf("write(fd, %p, 8192) returned %d, not -1\n", addr, n);
exit(1);
}
close(fd);
unlink("copyin1");
n = write(1, (char *)addr, 8192);
if (n > 0) {
printf("write(1, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
int fds[2];
if (pipe(fds) < 0) {
printf("pipe() failed\n");
exit(1);
}
n = write(fds[1], (char *)addr, 8192);
if (n > 0) {
printf("write(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous pointers to system calls
// that write user memory with copyout?
void copyout(char *s) {
uint64 addrs[] = {0x80000000LL, 0xffffffffffffffff};
for (int ai = 0; ai < 2; ai++) {
uint64 addr = addrs[ai];
int fd = open("README", 0);
if (fd < 0) {
printf("open(README) failed\n");
exit(1);
}
int n = read(fd, (void *)addr, 8192);
if (n > 0) {
printf("read(fd, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fd);
int fds[2];
if (pipe(fds) < 0) {
printf("pipe() failed\n");
exit(1);
}
n = write(fds[1], "x", 1);
if (n != 1) {
printf("pipe write failed\n");
exit(1);
}
n = read(fds[0], (void *)addr, 8192);
if (n > 0) {
printf("read(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous string pointers to system calls?
void copyinstr1(char *s) {
uint64 addrs[] = {0x80000000LL, 0xffffffffffffffff};
for (int ai = 0; ai < 2; ai++) {
uint64 addr = addrs[ai];
int fd = open((char *)addr, O_CREATE | O_WRONLY);
if (fd >= 0) {
printf("open(%p) returned %d, not -1\n", addr, fd);
exit(1);
}
}
}
// what if a string system call argument is exactly the size
// of the kernel buffer it is copied into, so that the null
// would fall just beyond the end of the kernel buffer?
void copyinstr2(char *s) {
char b[MAXPATH + 1];
for (int i = 0; i < MAXPATH; i++)
b[i] = 'x';
b[MAXPATH] = '\0';
int ret = unlink(b);
if (ret != -1) {
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
if (fd != -1) {
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
if (ret != -1) {
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = {"xx", 0};
ret = exec(b, args);
if (ret != -1) {
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
int pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
}
if (pid == 0) {
static char big[PGSIZE + 1];
for (int i = 0; i < PGSIZE; i++)
big[i] = 'x';
big[PGSIZE] = '\0';
char *args2[] = {big, big, big, 0};
ret = exec("echo", args2);
if (ret != -1) {
printf("exec(echo, BIG) returned %d, not -1\n", fd);
exit(1);
}
exit(747); // OK
}
int st = 0;
wait(&st);
if (st != 747) {
printf("exec(echo, BIG) succeeded, should have failed\n");
exit(1);
}
}
// what if a string argument crosses over the end of last user page?
void copyinstr3(char *s) {
sbrk(8192);
uint64 top = (uint64)sbrk(0);
if ((top % PGSIZE) != 0) {
sbrk(PGSIZE - (top % PGSIZE));
}
top = (uint64)sbrk(0);
if (top % PGSIZE) {
printf("oops\n");
exit(1);
}
char *b = (char *)(top - 1);
*b = 'x';
int ret = unlink(b);
if (ret != -1) {
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
if (fd != -1) {
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
if (ret != -1) {
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = {"xx", 0};
ret = exec(b, args);
if (ret != -1) {
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
}
// See if the kernel refuses to read/write user memory that the
// application doesn't have anymore, because it returned it.
void rwsbrk() {
int fd, n;
uint64 a = (uint64)sbrk(8192);
if (a == 0xffffffffffffffffLL) {
printf("sbrk(rwsbrk) failed\n");
exit(1);
}
if ((uint64)sbrk(-8192) == 0xffffffffffffffffLL) {
printf("sbrk(rwsbrk) shrink failed\n");
exit(1);
}
fd = open("rwsbrk", O_CREATE | O_WRONLY);
if (fd < 0) {
printf("open(rwsbrk) failed\n");
exit(1);
}
n = write(fd, (void *)(a + 4096), 1024);
if (n >= 0) {
printf("write(fd, %p, 1024) returned %d, not -1\n", a + 4096, n);
exit(1);
}
close(fd);
unlink("rwsbrk");
fd = open("README", O_RDONLY);
if (fd < 0) {
printf("open(rwsbrk) failed\n");
exit(1);
}
n = read(fd, (void *)(a + 4096), 10);
if (n >= 0) {
printf("read(fd, %p, 10) returned %d, not -1\n", a + 4096, n);
exit(1);
}
close(fd);
exit(0);
}
// test O_TRUNC.
void truncate1(char *s) {
char buf[32];
unlink("truncfile");
int fd1 = open("truncfile", O_CREATE | O_WRONLY | O_TRUNC);
write(fd1, "abcd", 4);
close(fd1);
int fd2 = open("truncfile", O_RDONLY);
int n = read(fd2, buf, sizeof(buf));
if (n != 4) {
printf("%s: read %d bytes, wanted 4\n", s, n);
exit(1);
}
fd1 = open("truncfile", O_WRONLY | O_TRUNC);
int fd3 = open("truncfile", O_RDONLY);
n = read(fd3, buf, sizeof(buf));
if (n != 0) {
printf("aaa fd3=%d\n", fd3);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
if (n != 0) {
printf("bbb fd2=%d\n", fd2);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
write(fd1, "abcdef", 6);
n = read(fd3, buf, sizeof(buf));
if (n != 6) {
printf("%s: read %d bytes, wanted 6\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
if (n != 2) {
printf("%s: read %d bytes, wanted 2\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
close(fd3);
}
// write to an open FD whose file has just been truncated.
// this causes a write at an offset beyond the end of the file.
// such writes fail on xv6 (unlike POSIX) but at least
// they don't crash.
void truncate2(char *s) {
unlink("truncfile");
int fd1 = open("truncfile", O_CREATE | O_TRUNC | O_WRONLY);
write(fd1, "abcd", 4);
int fd2 = open("truncfile", O_TRUNC | O_WRONLY);
int n = write(fd1, "x", 1);
if (n != -1) {
printf("%s: write returned %d, expected -1\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
}
void truncate3(char *s) {
int pid, xstatus;
close(open("truncfile", O_CREATE | O_TRUNC | O_WRONLY));
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
for (int i = 0; i < 100; i++) {
char buf[32];
int fd = open("truncfile", O_WRONLY);
if (fd < 0) {
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "1234567890", 10);
if (n != 10) {
printf("%s: write got %d, expected 10\n", s, n);
exit(1);
}
close(fd);
fd = open("truncfile", O_RDONLY);
read(fd, buf, sizeof(buf));
close(fd);
}
exit(0);
}
for (int i = 0; i < 150; i++) {
int fd = open("truncfile", O_CREATE | O_WRONLY | O_TRUNC);
if (fd < 0) {
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "xxx", 3);
if (n != 3) {
printf("%s: write got %d, expected 3\n", s, n);
exit(1);
}
close(fd);
}
wait(&xstatus);
unlink("truncfile");
exit(xstatus);
}
// does chdir() call iput(p->cwd) in a transaction?
void iputtest(char *s) {
if (mkdir("iputdir") < 0) {
printf("%s: mkdir failed\n", s);
exit(1);
}
if (chdir("iputdir") < 0) {
printf("%s: chdir iputdir failed\n", s);
exit(1);
}
if (unlink("../iputdir") < 0) {
printf("%s: unlink ../iputdir failed\n", s);
exit(1);
}
if (chdir("/") < 0) {
printf("%s: chdir / failed\n", s);
exit(1);
}
}
// does exit() call iput(p->cwd) in a transaction?
void exitiputtest(char *s) {
int pid, xstatus;
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
if (mkdir("iputdir") < 0) {
printf("%s: mkdir failed\n", s);
exit(1);
}
if (chdir("iputdir") < 0) {
printf("%s: child chdir failed\n", s);
exit(1);
}
if (unlink("../iputdir") < 0) {
printf("%s: unlink ../iputdir failed\n", s);
exit(1);
}
exit(0);
}
wait(&xstatus);
exit(xstatus);
}
// does the error path in open() for attempt to write a
// directory call iput() in a transaction?
// needs a hacked kernel that pauses just after the namei()
// call in sys_open():
// if((ip = namei(path)) == 0)
// return -1;
// {
// int i;
// for(i = 0; i < 10000; i++)
// yield();
// }
void openiputtest(char *s) {
int pid, xstatus;
if (mkdir("oidir") < 0) {
printf("%s: mkdir oidir failed\n", s);
exit(1);
}
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
int fd = open("oidir", O_RDWR);
if (fd >= 0) {
printf("%s: open directory for write succeeded\n", s);
exit(1);
}
exit(0);
}
sleep(1);
if (unlink("oidir") != 0) {
printf("%s: unlink failed\n", s);
exit(1);
}
wait(&xstatus);
exit(xstatus);
}
// simple file system tests
void opentest(char *s) {
int fd;
fd = open("echo", 0);
if (fd < 0) {
printf("%s: open echo failed!\n", s);
exit(1);
}
close(fd);
fd = open("doesnotexist", 0);
if (fd >= 0) {
printf("%s: open doesnotexist succeeded!\n", s);
exit(1);
}
}
void writetest(char *s) {
int fd;
int i;
enum { N = 100, SZ = 10 };
fd = open("small", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: error: creat small failed!\n", s);
exit(1);
}
for (i = 0; i < N; i++) {
if (write(fd, "aaaaaaaaaa", SZ) != SZ) {
printf("%s: error: write aa %d new file failed\n", s, i);
exit(1);
}
if (write(fd, "bbbbbbbbbb", SZ) != SZ) {
printf("%s: error: write bb %d new file failed\n", s, i);
exit(1);
}
}
close(fd);
fd = open("small", O_RDONLY);
if (fd < 0) {
printf("%s: error: open small failed!\n", s);
exit(1);
}
i = read(fd, buf, N * SZ * 2);
if (i != N * SZ * 2) {
printf("%s: read failed\n", s);
exit(1);
}
close(fd);
if (unlink("small") < 0) {
printf("%s: unlink small failed\n", s);
exit(1);
}
}
void writebig(char *s) {
int i, fd, n;
fd = open("big", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: error: creat big failed!\n", s);
exit(1);
}
for (i = 0; i < MAXFILE; i++) {
((int *)buf)[0] = i;
if (write(fd, buf, BSIZE) != BSIZE) {
printf("%s: error: write big file failed\n", s, i);
exit(1);
}
}
close(fd);
fd = open("big", O_RDONLY);
if (fd < 0) {
printf("%s: error: open big failed!\n", s);
exit(1);
}
n = 0;
for (;;) {
i = read(fd, buf, BSIZE);
if (i == 0) {
if (n == MAXFILE - 1) {
printf("%s: read only %d blocks from big", s, n);
exit(1);
}
break;
} else if (i != BSIZE) {
printf("%s: read failed %d\n", s, i);
exit(1);
}
if (((int *)buf)[0] != n) {
printf("%s: read content of block %d is %d\n", s, n,
((int *)buf)[0]);
exit(1);
}
n++;
}
close(fd);
if (unlink("big") < 0) {
printf("%s: unlink big failed\n", s);
exit(1);
}
}
// many creates, followed by unlink test
void createtest(char *s) {
int i, fd;
enum { N = 52 };
char name[3];
name[0] = 'a';
name[2] = '\0';
for (i = 0; i < N; i++) {
name[1] = '0' + i;
fd = open(name, O_CREATE | O_RDWR);
close(fd);
}
name[0] = 'a';
name[2] = '\0';
for (i = 0; i < N; i++) {
name[1] = '0' + i;
unlink(name);
}
}
void dirtest(char *s) {
if (mkdir("dir0") < 0) {
printf("%s: mkdir failed\n", s);
exit(1);
}
if (chdir("dir0") < 0) {
printf("%s: chdir dir0 failed\n", s);
exit(1);
}
if (chdir("..") < 0) {
printf("%s: chdir .. failed\n", s);
exit(1);
}
if (unlink("dir0") < 0) {
printf("%s: unlink dir0 failed\n", s);
exit(1);
}
}
void exectest(char *s) {
int fd, xstatus, pid;
char *echoargv[] = {"echo", "OK", 0};
char buf[3];
unlink("echo-ok");
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
close(1);
fd = open("echo-ok", O_CREATE | O_WRONLY);
if (fd < 0) {
printf("%s: create failed\n", s);
exit(1);
}
if (fd != 1) {
printf("%s: wrong fd\n", s);
exit(1);
}
if (exec("echo", echoargv) < 0) {
printf("%s: exec echo failed\n", s);
exit(1);
}
// won't get to here
}
if (wait(&xstatus) != pid) {
printf("%s: wait failed!\n", s);
}
if (xstatus != 0)
exit(xstatus);
fd = open("echo-ok", O_RDONLY);
if (fd < 0) {
printf("%s: open failed\n", s);
exit(1);
}
if (read(fd, buf, 2) != 2) {
printf("%s: read failed\n", s);
exit(1);
}
unlink("echo-ok");
if (buf[0] == 'O' && buf[1] == 'K')
exit(0);
else {
printf("%s: wrong output\n", s);
exit(1);
}
}
// simple fork and pipe read/write
void pipe1(char *s) {
int fds[2], pid, xstatus;
int seq, i, n, cc, total;
enum { N = 5, SZ = 1033 };
if (pipe(fds) != 0) {
printf("%s: pipe() failed\n", s);
exit(1);
}
pid = fork();
seq = 0;
if (pid == 0) {
close(fds[0]);
for (n = 0; n < N; n++) {
for (i = 0; i < SZ; i++)
buf[i] = seq++;
if (write(fds[1], buf, SZ) != SZ) {
printf("%s: pipe1 oops 1\n", s);
exit(1);
}
}
exit(0);
} else if (pid > 0) {
close(fds[1]);
total = 0;
cc = 1;
while ((n = read(fds[0], buf, cc)) > 0) {
for (i = 0; i < n; i++) {
if ((buf[i] & 0xff) != (seq++ & 0xff)) {
printf("%s: pipe1 oops 2\n", s);
return;
}
}
total += n;
cc = cc * 2;
if (cc > sizeof(buf))
cc = sizeof(buf);
}
if (total != N * SZ) {
printf("%s: pipe1 oops 3 total %d\n", total);
exit(1);
}
close(fds[0]);
wait(&xstatus);
exit(xstatus);
} else {
printf("%s: fork() failed\n", s);
exit(1);
}
}
// test if child is killed (status = -1)
void killstatus(char *s) {
int xst;
for (int i = 0; i < 100; i++) {
int pid1 = fork();
if (pid1 < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid1 == 0) {
while (1) {
getpid();
}
exit(0);
}
sleep(1);
kill(pid1);
wait(&xst);
if (xst != -1) {
printf("%s: status should be -1\n", s);
exit(1);
}
}
exit(0);
}
// meant to be run w/ at most two CPUs
void preempt(char *s) {
int pid1, pid2, pid3;
int pfds[2];
pid1 = fork();
if (pid1 < 0) {
printf("%s: fork failed", s);
exit(1);
}
if (pid1 == 0)
for (;;)
;
pid2 = fork();
if (pid2 < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid2 == 0)
for (;;)
;
pipe(pfds);
pid3 = fork();
if (pid3 < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid3 == 0) {
close(pfds[0]);
if (write(pfds[1], "x", 1) != 1)
printf("%s: preempt write error", s);
close(pfds[1]);
for (;;)
;
}
close(pfds[1]);
if (read(pfds[0], buf, sizeof(buf)) != 1) {
printf("%s: preempt read error", s);
return;
}
close(pfds[0]);
printf("kill... ");
kill(pid1);
kill(pid2);
kill(pid3);
printf("wait... ");
wait(0);
wait(0);
wait(0);
}
// try to find any races between exit and wait
void exitwait(char *s) {
int i, pid;
for (i = 0; i < 100; i++) {
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid) {
int xstate;
if (wait(&xstate) != pid) {
printf("%s: wait wrong pid\n", s);
exit(1);
}
if (i != xstate) {
printf("%s: wait wrong exit status\n", s);
exit(1);
}
} else {
exit(i);
}
}
}
// try to find races in the reparenting
// code that handles a parent exiting
// when it still has live children.
void reparent(char *s) {
int master_pid = getpid();
for (int i = 0; i < 200; i++) {
int pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid) {
if (wait(0) != pid) {
printf("%s: wait wrong pid\n", s);
exit(1);
}
} else {
int pid2 = fork();
if (pid2 < 0) {
kill(master_pid);
exit(1);
}
exit(0);
}
}
exit(0);
}
// what if two children exit() at the same time?
void twochildren(char *s) {
for (int i = 0; i < 1000; i++) {
int pid1 = fork();
if (pid1 < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid1 == 0) {
exit(0);
} else {
int pid2 = fork();
if (pid2 < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid2 == 0) {
exit(0);
} else {
wait(0);
wait(0);
}
}
}
}
// concurrent forks to try to expose locking bugs.
void forkfork(char *s) {
enum { N = 2 };
for (int i = 0; i < N; i++) {
int pid = fork();
if (pid < 0) {
printf("%s: fork failed", s);
exit(1);
}
if (pid == 0) {
for (int j = 0; j < 200; j++) {
int pid1 = fork();
if (pid1 < 0) {
exit(1);
}
if (pid1 == 0) {
exit(0);
}
wait(0);
}
exit(0);
}
}
int xstatus;
for (int i = 0; i < N; i++) {
wait(&xstatus);
if (xstatus != 0) {
printf("%s: fork in child failed", s);
exit(1);
}
}
}
void forkforkfork(char *s) {
unlink("stopforking");
int pid = fork();
if (pid < 0) {
printf("%s: fork failed", s);
exit(1);
}
if (pid == 0) {
while (1) {
int fd = open("stopforking", 0);
if (fd >= 0) {
exit(0);
}
if (fork() < 0) {
close(open("stopforking", O_CREATE | O_RDWR));
}
}
exit(0);
}
sleep(20); // two seconds
close(open("stopforking", O_CREATE | O_RDWR));
wait(0);
sleep(10); // one second
}
// regression test. does reparent() violate the parent-then-child
// locking order when giving away a child to init, so that exit()
// deadlocks against init's wait()? also used to trigger a "panic:
// release" due to exit() releasing a different p->parent->lock than
// it acquired.
void reparent2(char *s) {
for (int i = 0; i < 800; i++) {
int pid1 = fork();
if (pid1 < 0) {
printf("fork failed\n");
exit(1);
}
if (pid1 == 0) {
fork();
fork();
exit(0);
}
wait(0);
}
exit(0);
}
// allocate all mem, free it, and allocate again
void mem(char *s) {
void *m1, *m2;
int pid;
if ((pid = fork()) == 0) {
m1 = 0;
while ((m2 = malloc(10001)) != 0) {
*(char **)m2 = m1;
m1 = m2;
}
while (m1) {
m2 = *(char **)m1;
free(m1);
m1 = m2;
}
m1 = malloc(1024 * 20);
if (m1 == 0) {
printf("couldn't allocate mem?!!\n", s);
exit(1);
}
free(m1);
exit(0);
} else {
int xstatus;
wait(&xstatus);
if (xstatus == -1) {
// probably page fault, so might be lazy lab,
// so OK.
exit(0);
}
exit(xstatus);
}
}
// More file system tests
// two processes write to the same file descriptor
// is the offset shared? does inode locking work?
void sharedfd(char *s) {
int fd, pid, i, n, nc, np;
enum { N = 1000, SZ = 10 };
char buf[SZ];
unlink("sharedfd");
fd = open("sharedfd", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: cannot open sharedfd for writing", s);
exit(1);
}
pid = fork();
memset(buf, pid == 0 ? 'c' : 'p', sizeof(buf));
for (i = 0; i < N; i++) {
if (write(fd, buf, sizeof(buf)) != sizeof(buf)) {
printf("%s: write sharedfd failed\n", s);
exit(1);
}
}
if (pid == 0) {
exit(0);
} else {
int xstatus;
wait(&xstatus);
if (xstatus != 0)
exit(xstatus);
}
close(fd);
fd = open("sharedfd", 0);
if (fd < 0) {
printf("%s: cannot open sharedfd for reading\n", s);
exit(1);
}
nc = np = 0;
while ((n = read(fd, buf, sizeof(buf))) > 0) {
for (i = 0; i < sizeof(buf); i++) {
if (buf[i] == 'c')
nc++;
if (buf[i] == 'p')
np++;
}
}
close(fd);
unlink("sharedfd");
if (nc == N * SZ && np == N * SZ) {
exit(0);
} else {
printf("%s: nc/np test fails\n", s);
exit(1);
}
}
// four processes write different files at the same
// time, to test block allocation.
void fourfiles(char *s) {
int fd, pid, i, j, n, total, pi;
char *names[] = {"f0", "f1", "f2", "f3"};
char *fname;
enum { N = 12, NCHILD = 4, SZ = 500 };
for (pi = 0; pi < NCHILD; pi++) {
fname = names[pi];
unlink(fname);
pid = fork();
if (pid < 0) {
printf("fork failed\n", s);
exit(1);
}
if (pid == 0) {
fd = open(fname, O_CREATE | O_RDWR);
if (fd < 0) {
printf("create failed\n", s);
exit(1);
}
memset(buf, '0' + pi, SZ);
for (i = 0; i < N; i++) {
if ((n = write(fd, buf, SZ)) != SZ) {
printf("write failed %d\n", n);
exit(1);
}
}
exit(0);
}
}
int xstatus;
for (pi = 0; pi < NCHILD; pi++) {
wait(&xstatus);
if (xstatus != 0)
exit(xstatus);
}
for (i = 0; i < NCHILD; i++) {
fname = names[i];
fd = open(fname, 0);
total = 0;
while ((n = read(fd, buf, sizeof(buf))) > 0) {
for (j = 0; j < n; j++) {
if (buf[j] != '0' + i) {
printf("wrong char\n", s);
exit(1);
}
}
total += n;
}
close(fd);
if (total != N * SZ) {
printf("wrong length %d\n", total);
exit(1);
}
unlink(fname);
}
}
// four processes create and delete different files in same directory
void createdelete(char *s) {
enum { N = 20, NCHILD = 4 };
int pid, i, fd, pi;
char name[32];
for (pi = 0; pi < NCHILD; pi++) {
pid = fork();
if (pid < 0) {
printf("fork failed\n", s);
exit(1);
}
if (pid == 0) {
name[0] = 'p' + pi;
name[2] = '\0';
for (i = 0; i < N; i++) {
name[1] = '0' + i;
fd = open(name, O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: create failed\n", s);
exit(1);
}
close(fd);
if (i > 0 && (i % 2) == 0) {
name[1] = '0' + (i / 2);
if (unlink(name) < 0) {
printf("%s: unlink failed\n", s);
exit(1);
}
}
}
exit(0);
}
}
int xstatus;
for (pi = 0; pi < NCHILD; pi++) {
wait(&xstatus);
if (xstatus != 0)
exit(1);
}
name[0] = name[1] = name[2] = 0;
for (i = 0; i < N; i++) {
for (pi = 0; pi < NCHILD; pi++) {
name[0] = 'p' + pi;
name[1] = '0' + i;
fd = open(name, 0);
if ((i == 0 || i >= N / 2) && fd < 0) {
printf("%s: oops createdelete %s didn't exist\n", s, name);
exit(1);
} else if ((i >= 1 && i < N / 2) && fd >= 0) {
printf("%s: oops createdelete %s did exist\n", s, name);
exit(1);
}
if (fd >= 0)
close(fd);
}
}
for (i = 0; i < N; i++) {
for (pi = 0; pi < NCHILD; pi++) {
name[0] = 'p' + i;
name[1] = '0' + i;
unlink(name);
}
}
}
// can I unlink a file and still read it?
void unlinkread(char *s) {
enum { SZ = 5 };
int fd, fd1;
fd = open("unlinkread", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: create unlinkread failed\n", s);
exit(1);
}
write(fd, "hello", SZ);
close(fd);
fd = open("unlinkread", O_RDWR);
if (fd < 0) {
printf("%s: open unlinkread failed\n", s);
exit(1);
}
if (unlink("unlinkread") != 0) {
printf("%s: unlink unlinkread failed\n", s);
exit(1);
}
fd1 = open("unlinkread", O_CREATE | O_RDWR);
write(fd1, "yyy", 3);
close(fd1);
if (read(fd, buf, sizeof(buf)) != SZ) {
printf("%s: unlinkread read failed", s);
exit(1);
}
if (buf[0] != 'h') {
printf("%s: unlinkread wrong data\n", s);
exit(1);
}
if (write(fd, buf, 10) != 10) {
printf("%s: unlinkread write failed\n", s);
exit(1);
}
close(fd);
unlink("unlinkread");
}
void linktest(char *s) {
enum { SZ = 5 };
int fd;
unlink("lf1");
unlink("lf2");
fd = open("lf1", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: create lf1 failed\n", s);
exit(1);
}
if (write(fd, "hello", SZ) != SZ) {
printf("%s: write lf1 failed\n", s);
exit(1);
}
close(fd);
if (link("lf1", "lf2") < 0) {
printf("%s: link lf1 lf2 failed\n", s);
exit(1);
}
unlink("lf1");
if (open("lf1", 0) >= 0) {
printf("%s: unlinked lf1 but it is still there!\n", s);
exit(1);
}
fd = open("lf2", 0);
if (fd < 0) {
printf("%s: open lf2 failed\n", s);
exit(1);
}
if (read(fd, buf, sizeof(buf)) != SZ) {
printf("%s: read lf2 failed\n", s);
exit(1);
}
close(fd);
if (link("lf2", "lf2") >= 0) {
printf("%s: link lf2 lf2 succeeded! oops\n", s);
exit(1);
}
unlink("lf2");
if (link("lf2", "lf1") >= 0) {
printf("%s: link non-existent succeeded! oops\n", s);
exit(1);
}
if (link(".", "lf1") >= 0) {
printf("%s: link . lf1 succeeded! oops\n", s);
exit(1);
}
}
// test concurrent create/link/unlink of the same file
void concreate(char *s) {
enum { N = 40 };
char file[3];
int i, pid, n, fd;
char fa[N];
struct {
ushort inum;
char name[DIRSIZ];
} de;
file[0] = 'C';
file[2] = '\0';
for (i = 0; i < N; i++) {
file[1] = '0' + i;
unlink(file);
pid = fork();
if (pid && (i % 3) == 1) {
link("C0", file);
} else if (pid == 0 && (i % 5) == 1) {
link("C0", file);
} else {
fd = open(file, O_CREATE | O_RDWR);
if (fd < 0) {
printf("concreate create %s failed\n", file);
exit(1);
}
close(fd);
}
if (pid == 0) {
exit(0);
} else {
int xstatus;
wait(&xstatus);
if (xstatus != 0)
exit(1);
}
}
memset(fa, 0, sizeof(fa));
fd = open(".", 0);
n = 0;
while (read(fd, &de, sizeof(de)) > 0) {
if (de.inum == 0)
continue;
if (de.name[0] == 'C' && de.name[2] == '\0') {
i = de.name[1] - '0';
if (i < 0 || i >= sizeof(fa)) {
printf("%s: concreate weird file %s\n", s, de.name);
exit(1);
}
if (fa[i]) {
printf("%s: concreate duplicate file %s\n", s, de.name);
exit(1);
}
fa[i] = 1;
n++;
}
}
close(fd);
if (n != N) {
printf("%s: concreate not enough files in directory listing\n", s);
exit(1);
}
for (i = 0; i < N; i++) {
file[1] = '0' + i;
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (((i % 3) == 0 && pid == 0) || ((i % 3) == 1 && pid != 0)) {
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
} else {
unlink(file);
unlink(file);
unlink(file);
unlink(file);
unlink(file);
unlink(file);
}
if (pid == 0)
exit(0);
else
wait(0);
}
}
// another concurrent link/unlink/create test,
// to look for deadlocks.
void linkunlink(char *s) {
int pid, i;
unlink("x");
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
unsigned int x = (pid ? 1 : 97);
for (i = 0; i < 100; i++) {
x = x * 1103515245 + 12345;
if ((x % 3) == 0) {
close(open("x", O_RDWR | O_CREATE));
} else if ((x % 3) == 1) {
link("cat", "x");
} else {
unlink("x");
}
}
if (pid)
wait(0);
else
exit(0);
}
void subdir(char *s) {
int fd, cc;
unlink("ff");
if (mkdir("dd") != 0) {
printf("%s: mkdir dd failed\n", s);
exit(1);
}
fd = open("dd/ff", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: create dd/ff failed\n", s);
exit(1);
}
write(fd, "ff", 2);
close(fd);
if (unlink("dd") >= 0) {
printf("%s: unlink dd (non-empty dir) succeeded!\n", s);
exit(1);
}
if (mkdir("/dd/dd") != 0) {
printf("subdir mkdir dd/dd failed\n", s);
exit(1);
}
fd = open("dd/dd/ff", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: create dd/dd/ff failed\n", s);
exit(1);
}
write(fd, "FF", 2);
close(fd);
fd = open("dd/dd/../ff", 0);
if (fd < 0) {
printf("%s: open dd/dd/../ff failed\n", s);
exit(1);
}
cc = read(fd, buf, sizeof(buf));
if (cc != 2 || buf[0] != 'f') {
printf("%s: dd/dd/../ff wrong content\n", s);
exit(1);
}
close(fd);
if (link("dd/dd/ff", "dd/dd/ffff") != 0) {
printf("link dd/dd/ff dd/dd/ffff failed\n", s);
exit(1);
}
if (unlink("dd/dd/ff") != 0) {
printf("%s: unlink dd/dd/ff failed\n", s);
exit(1);
}
if (open("dd/dd/ff", O_RDONLY) >= 0) {
printf("%s: open (unlinked) dd/dd/ff succeeded\n", s);
exit(1);
}
if (chdir("dd") != 0) {
printf("%s: chdir dd failed\n", s);
exit(1);
}
if (chdir("dd/../../dd") != 0) {
printf("%s: chdir dd/../../dd failed\n", s);
exit(1);
}
if (chdir("dd/../../../dd") != 0) {
printf("chdir dd/../../dd failed\n", s);
exit(1);
}
if (chdir("./..") != 0) {
printf("%s: chdir ./.. failed\n", s);
exit(1);
}
fd = open("dd/dd/ffff", 0);
if (fd < 0) {
printf("%s: open dd/dd/ffff failed\n", s);
exit(1);
}
if (read(fd, buf, sizeof(buf)) != 2) {
printf("%s: read dd/dd/ffff wrong len\n", s);
exit(1);
}
close(fd);
if (open("dd/dd/ff", O_RDONLY) >= 0) {
printf("%s: open (unlinked) dd/dd/ff succeeded!\n", s);
exit(1);
}
if (open("dd/ff/ff", O_CREATE | O_RDWR) >= 0) {
printf("%s: create dd/ff/ff succeeded!\n", s);
exit(1);
}
if (open("dd/xx/ff", O_CREATE | O_RDWR) >= 0) {
printf("%s: create dd/xx/ff succeeded!\n", s);
exit(1);
}
if (open("dd", O_CREATE) >= 0) {
printf("%s: create dd succeeded!\n", s);
exit(1);
}
if (open("dd", O_RDWR) >= 0) {
printf("%s: open dd rdwr succeeded!\n", s);
exit(1);
}
if (open("dd", O_WRONLY) >= 0) {
printf("%s: open dd wronly succeeded!\n", s);
exit(1);
}
if (link("dd/ff/ff", "dd/dd/xx") == 0) {
printf("%s: link dd/ff/ff dd/dd/xx succeeded!\n", s);
exit(1);
}
if (link("dd/xx/ff", "dd/dd/xx") == 0) {
printf("%s: link dd/xx/ff dd/dd/xx succeeded!\n", s);
exit(1);
}
if (link("dd/ff", "dd/dd/ffff") == 0) {
printf("%s: link dd/ff dd/dd/ffff succeeded!\n", s);
exit(1);
}
if (mkdir("dd/ff/ff") == 0) {
printf("%s: mkdir dd/ff/ff succeeded!\n", s);
exit(1);
}
if (mkdir("dd/xx/ff") == 0) {
printf("%s: mkdir dd/xx/ff succeeded!\n", s);
exit(1);
}
if (mkdir("dd/dd/ffff") == 0) {
printf("%s: mkdir dd/dd/ffff succeeded!\n", s);
exit(1);
}
if (unlink("dd/xx/ff") == 0) {
printf("%s: unlink dd/xx/ff succeeded!\n", s);
exit(1);
}
if (unlink("dd/ff/ff") == 0) {
printf("%s: unlink dd/ff/ff succeeded!\n", s);
exit(1);
}
if (chdir("dd/ff") == 0) {
printf("%s: chdir dd/ff succeeded!\n", s);
exit(1);
}
if (chdir("dd/xx") == 0) {
printf("%s: chdir dd/xx succeeded!\n", s);
exit(1);
}
if (unlink("dd/dd/ffff") != 0) {
printf("%s: unlink dd/dd/ff failed\n", s);
exit(1);
}
if (unlink("dd/ff") != 0) {
printf("%s: unlink dd/ff failed\n", s);
exit(1);
}
if (unlink("dd") == 0) {
printf("%s: unlink non-empty dd succeeded!\n", s);
exit(1);
}
if (unlink("dd/dd") < 0) {
printf("%s: unlink dd/dd failed\n", s);
exit(1);
}
if (unlink("dd") < 0) {
printf("%s: unlink dd failed\n", s);
exit(1);
}
}
// test writes that are larger than the log.
void bigwrite(char *s) {
int fd, sz;
unlink("bigwrite");
for (sz = 499; sz < (MAXOPBLOCKS + 2) * BSIZE; sz += 471) {
fd = open("bigwrite", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: cannot create bigwrite\n", s);
exit(1);
}
int i;
for (i = 0; i < 2; i++) {
int cc = write(fd, buf, sz);
if (cc != sz) {
printf("%s: write(%d) ret %d\n", s, sz, cc);
exit(1);
}
}
close(fd);
unlink("bigwrite");
}
}
void bigfile(char *s) {
enum { N = 20, SZ = 600 };
int fd, i, total, cc;
unlink("bigfile.dat");
fd = open("bigfile.dat", O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: cannot create bigfile", s);
exit(1);
}
for (i = 0; i < N; i++) {
memset(buf, i, SZ);
if (write(fd, buf, SZ) != SZ) {
printf("%s: write bigfile failed\n", s);
exit(1);
}
}
close(fd);
fd = open("bigfile.dat", 0);
if (fd < 0) {
printf("%s: cannot open bigfile\n", s);
exit(1);
}
total = 0;
for (i = 0;; i++) {
cc = read(fd, buf, SZ / 2);
if (cc < 0) {
printf("%s: read bigfile failed\n", s);
exit(1);
}
if (cc == 0)
break;
if (cc != SZ / 2) {
printf("%s: short read bigfile\n", s);
exit(1);
}
if (buf[0] != i / 2 || buf[SZ / 2 - 1] != i / 2) {
printf("%s: read bigfile wrong data\n", s);
exit(1);
}
total += cc;
}
close(fd);
if (total != N * SZ) {
printf("%s: read bigfile wrong total\n", s);
exit(1);
}
unlink("bigfile.dat");
}
void fourteen(char *s) {
int fd;
// DIRSIZ is 14.
if (mkdir("12345678901234") != 0) {
printf("%s: mkdir 12345678901234 failed\n", s);
exit(1);
}
if (mkdir("12345678901234/123456789012345") != 0) {
printf("%s: mkdir 12345678901234/123456789012345 failed\n", s);
exit(1);
}
fd = open("123456789012345/123456789012345/123456789012345", O_CREATE);
if (fd < 0) {
printf("%s: create 123456789012345/123456789012345/123456789012345 "
"failed\n",
s);
exit(1);
}
close(fd);
fd = open("12345678901234/12345678901234/12345678901234", 0);
if (fd < 0) {
printf("%s: open 12345678901234/12345678901234/12345678901234 failed\n",
s);
exit(1);
}
close(fd);
if (mkdir("12345678901234/12345678901234") == 0) {
printf("%s: mkdir 12345678901234/12345678901234 succeeded!\n", s);
exit(1);
}
if (mkdir("123456789012345/12345678901234") == 0) {
printf("%s: mkdir 12345678901234/123456789012345 succeeded!\n", s);
exit(1);
}
// clean up
unlink("123456789012345/12345678901234");
unlink("12345678901234/12345678901234");
unlink("12345678901234/12345678901234/12345678901234");
unlink("123456789012345/123456789012345/123456789012345");
unlink("12345678901234/123456789012345");
unlink("12345678901234");
}
void rmdot(char *s) {
if (mkdir("dots") != 0) {
printf("%s: mkdir dots failed\n", s);
exit(1);
}
if (chdir("dots") != 0) {
printf("%s: chdir dots failed\n", s);
exit(1);
}
if (unlink(".") == 0) {
printf("%s: rm . worked!\n", s);
exit(1);
}
if (unlink("..") == 0) {
printf("%s: rm .. worked!\n", s);
exit(1);
}
if (chdir("/") != 0) {
printf("%s: chdir / failed\n", s);
exit(1);
}
if (unlink("dots/.") == 0) {
printf("%s: unlink dots/. worked!\n", s);
exit(1);
}
if (unlink("dots/..") == 0) {
printf("%s: unlink dots/.. worked!\n", s);
exit(1);
}
if (unlink("dots") != 0) {
printf("%s: unlink dots failed!\n", s);
exit(1);
}
}
void dirfile(char *s) {
int fd;
fd = open("dirfile", O_CREATE);
if (fd < 0) {
printf("%s: create dirfile failed\n", s);
exit(1);
}
close(fd);
if (chdir("dirfile") == 0) {
printf("%s: chdir dirfile succeeded!\n", s);
exit(1);
}
fd = open("dirfile/xx", 0);
if (fd >= 0) {
printf("%s: create dirfile/xx succeeded!\n", s);
exit(1);
}
fd = open("dirfile/xx", O_CREATE);
if (fd >= 0) {
printf("%s: create dirfile/xx succeeded!\n", s);
exit(1);
}
if (mkdir("dirfile/xx") == 0) {
printf("%s: mkdir dirfile/xx succeeded!\n", s);
exit(1);
}
if (unlink("dirfile/xx") == 0) {
printf("%s: unlink dirfile/xx succeeded!\n", s);
exit(1);
}
if (link("README", "dirfile/xx") == 0) {
printf("%s: link to dirfile/xx succeeded!\n", s);
exit(1);
}
if (unlink("dirfile") != 0) {
printf("%s: unlink dirfile failed!\n", s);
exit(1);
}
fd = open(".", O_RDWR);
if (fd >= 0) {
printf("%s: open . for writing succeeded!\n", s);
exit(1);
}
fd = open(".", 0);
if (write(fd, "x", 1) > 0) {
printf("%s: write . succeeded!\n", s);
exit(1);
}
close(fd);
}
// test that iput() is called at the end of _namei().
// also tests empty file names.
void iref(char *s) {
int i, fd;
for (i = 0; i < NINODE + 1; i++) {
if (mkdir("irefd") != 0) {
printf("%s: mkdir irefd failed\n", s);
exit(1);
}
if (chdir("irefd") != 0) {
printf("%s: chdir irefd failed\n", s);
exit(1);
}
mkdir("");
link("README", "");
fd = open("", O_CREATE);
if (fd >= 0)
close(fd);
fd = open("xx", O_CREATE);
if (fd >= 0)
close(fd);
unlink("xx");
}
// clean up
for (i = 0; i < NINODE + 1; i++) {
chdir("..");
unlink("irefd");
}
chdir("/");
}
// test that fork fails gracefully
// the forktest binary also does this, but it runs out of proc entries first.
// inside the bigger usertests binary, we run out of memory first.
void forktest(char *s) {
enum { N = 1000 };
int n, pid;
for (n = 0; n < N; n++) {
pid = fork();
if (pid < 0)
break;
if (pid == 0)
exit(0);
}
if (n == 0) {
printf("%s: no fork at all!\n", s);
exit(1);
}
if (n == N) {
printf("%s: fork claimed to work 1000 times!\n", s);
exit(1);
}
for (; n > 0; n--) {
if (wait(0) < 0) {
printf("%s: wait stopped early\n", s);
exit(1);
}
}
if (wait(0) != -1) {
printf("%s: wait got too many\n", s);
exit(1);
}
}
void sbrkbasic(char *s) {
enum { TOOMUCH = 1024 * 1024 * 1024 };
int i, pid, xstatus;
char *c, *a, *b;
// does sbrk() return the expected failure value?
pid = fork();
if (pid < 0) {
printf("fork failed in sbrkbasic\n");
exit(1);
}
if (pid == 0) {
a = sbrk(TOOMUCH);
if (a == (char *)0xffffffffffffffffL) {
// it's OK if this fails.
exit(0);
}
for (b = a; b < a + TOOMUCH; b += 4096) {
*b = 99;
}
// we should not get here! either sbrk(TOOMUCH)
// should have failed, or (with lazy allocation)
// a pagefault should have killed this process.
exit(1);
}
wait(&xstatus);
if (xstatus == 1) {
printf("%s: too much memory allocated!\n", s);
exit(1);
}
// can one sbrk() less than a page?
a = sbrk(0);
for (i = 0; i < 5000; i++) {
b = sbrk(1);
if (b != a) {
printf("%s: sbrk test failed %d %x %x\n", s, i, a, b);
exit(1);
}
*b = 1;
a = b + 1;
}
pid = fork();
if (pid < 0) {
printf("%s: sbrk test fork failed\n", s);
exit(1);
}
c = sbrk(1);
c = sbrk(1);
if (c != a + 1) {
printf("%s: sbrk test failed post-fork\n", s);
exit(1);
}
if (pid == 0)
exit(0);
wait(&xstatus);
exit(xstatus);
}
void sbrkmuch(char *s) {
enum { BIG = 100 * 1024 * 1024 };
char *c, *oldbrk, *a, *lastaddr, *p;
uint64 amt;
oldbrk = sbrk(0);
// can one grow address space to something big?
a = sbrk(0);
amt = BIG - (uint64)a;
p = sbrk(amt);
if (p != a) {
printf("%s: sbrk test failed to grow big address space; enough phys "
"mem?\n",
s);
exit(1);
}
// touch each page to make sure it exists.
char *eee = sbrk(0);
for (char *pp = a; pp < eee; pp += 4096)
*pp = 1;
lastaddr = (char *)(BIG - 1);
*lastaddr = 99;
// can one de-allocate?
a = sbrk(0);
c = sbrk(-PGSIZE);
if (c == (char *)0xffffffffffffffffL) {
printf("%s: sbrk could not deallocate\n", s);
exit(1);
}
c = sbrk(0);
if (c != a - PGSIZE) {
printf("%s: sbrk deallocation produced wrong address, a %x c %x\n", s,
a, c);
exit(1);
}
// can one re-allocate that page?
a = sbrk(0);
c = sbrk(PGSIZE);
if (c != a || sbrk(0) != a + PGSIZE) {
printf("%s: sbrk re-allocation failed, a %x c %x\n", s, a, c);
exit(1);
}
if (*lastaddr == 99) {
// should be zero
printf("%s: sbrk de-allocation didn't really deallocate\n", s);
exit(1);
}
a = sbrk(0);
c = sbrk(-(sbrk(0) - oldbrk));
if (c != a) {
printf("%s: sbrk downsize failed, a %x c %x\n", s, a, c);
exit(1);
}
}
// can we read the kernel's memory?
void kernmem(char *s) {
char *a;
int pid;
for (a = (char *)(KERNBASE); a < (char *)(KERNBASE + 2000000); a += 50000) {
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
printf("%s: oops could read %x = %x\n", s, a, *a);
exit(1);
}
int xstatus;
wait(&xstatus);
if (xstatus != -1) // did kernel kill child?
exit(1);
}
}
// user code should not be able to write to addresses above MAXVA.
void MAXVAplus(char *s) {
volatile uint64 a = MAXVA;
for (; a != 0; a <<= 1) {
int pid;
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
*(char *)a = 99;
printf("%s: oops wrote %x\n", s, a);
exit(1);
}
int xstatus;
wait(&xstatus);
if (xstatus != -1) // did kernel kill child?
exit(1);
}
}
// if we run the system out of memory, does it clean up the last
// failed allocation?
void sbrkfail(char *s) {
enum { BIG = 100 * 1024 * 1024 };
int i, xstatus;
int fds[2];
char scratch;
char *c, *a;
int pids[10];
int pid;
if (pipe(fds) != 0) {
printf("%s: pipe() failed\n", s);
exit(1);
}
for (i = 0; i < sizeof(pids) / sizeof(pids[0]); i++) {
if ((pids[i] = fork()) == 0) {
// allocate a lot of memory
sbrk(BIG - (uint64)sbrk(0));
write(fds[1], "x", 1);
// sit around until killed
for (;;)
sleep(1000);
}
if (pids[i] != -1)
read(fds[0], &scratch, 1);
}
// if those failed allocations freed up the pages they did allocate,
// we'll be able to allocate here
c = sbrk(PGSIZE);
for (i = 0; i < sizeof(pids) / sizeof(pids[0]); i++) {
if (pids[i] == -1)
continue;
kill(pids[i]);
wait(0);
}
if (c == (char *)0xffffffffffffffffL) {
printf("%s: failed sbrk leaked memory\n", s);
exit(1);
}
// test running fork with the above allocated page
pid = fork();
if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
if (pid == 0) {
// allocate a lot of memory.
// this should produce a page fault,
// and thus not complete.
a = sbrk(0);
sbrk(10 * BIG);
int n = 0;
for (i = 0; i < 10 * BIG; i += PGSIZE) {
n += *(a + i);
}
// print n so the compiler doesn't optimize away
// the for loop.
printf("%s: allocate a lot of memory succeeded %d\n", s, n);
exit(1);
}
wait(&xstatus);
if (xstatus != -1 && xstatus != 2)
exit(1);
}
// test reads/writes from/to allocated memory
void sbrkarg(char *s) {
char *a;
int fd, n;
a = sbrk(PGSIZE);
fd = open("sbrk", O_CREATE | O_WRONLY);
unlink("sbrk");
if (fd < 0) {
printf("%s: open sbrk failed\n", s);
exit(1);
}
if ((n = write(fd, a, PGSIZE)) < 0) {
printf("%s: write sbrk failed\n", s);
exit(1);
}
close(fd);
// test writes to allocated memory
a = sbrk(PGSIZE);
if (pipe((int *)a) != 0) {
printf("%s: pipe() failed\n", s);
exit(1);
}
}
void validatetest(char *s) {
int hi;
uint64 p;
hi = 1100 * 1024;
for (p = 0; p <= (uint)hi; p += PGSIZE) {
// try to crash the kernel by passing in a bad string pointer
if (link("nosuchfile", (char *)p) != -1) {
printf("%s: link should not succeed\n", s);
exit(1);
}
}
}
// does uninitialized data start out zero?
char uninit[10000];
void bsstest(char *s) {
int i;
for (i = 0; i < sizeof(uninit); i++) {
if (uninit[i] != '\0') {
printf("%s: bss test failed\n", s);
exit(1);
}
}
}
// does exec return an error if the arguments
// are larger than a page? or does it write
// below the stack and wreck the instructions/data?
void bigargtest(char *s) {
int pid, fd, xstatus;
unlink("bigarg-ok");
pid = fork();
if (pid == 0) {
static char *args[MAXARG];
int i;
for (i = 0; i < MAXARG - 1; i++)
args[i] = "bigargs test: failed\n "
" "
" "
" ";
args[MAXARG - 1] = 0;
exec("echo", args);
fd = open("bigarg-ok", O_CREATE);
close(fd);
exit(0);
} else if (pid < 0) {
printf("%s: bigargtest: fork failed\n", s);
exit(1);
}
wait(&xstatus);
if (xstatus != 0)
exit(xstatus);
fd = open("bigarg-ok", 0);
if (fd < 0) {
printf("%s: bigarg test failed!\n", s);
exit(1);
}
close(fd);
}
// what happens when the file system runs out of blocks?
// answer: balloc panics, so this test is not useful.
void fsfull() {
int nfiles;
int fsblocks = 0;
printf("fsfull test\n");
for (nfiles = 0;; nfiles++) {
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
printf("writing %s\n", name);
int fd = open(name, O_CREATE | O_RDWR);
if (fd < 0) {
printf("open %s failed\n", name);
break;
}
int total = 0;
while (1) {
int cc = write(fd, buf, BSIZE);
if (cc < BSIZE)
break;
total += cc;
fsblocks++;
}
printf("wrote %d bytes\n", total);
close(fd);
if (total == 0)
break;
}
while (nfiles >= 0) {
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
unlink(name);
nfiles--;
}
printf("fsfull test finished\n");
}
void argptest(char *s) {
int fd;
fd = open("init", O_RDONLY);
if (fd < 0) {
printf("%s: open failed\n", s);
exit(1);
}
read(fd, sbrk(0) - 1, -1);
close(fd);
}
// check that there's an invalid page beneath
// the user stack, to catch stack overflow.
void stacktest(char *s) {
int pid;
int xstatus;
pid = fork();
if (pid == 0) {
char *sp = (char *)r_sp();
sp -= PGSIZE;
// the *sp should cause a trap.
printf("%s: stacktest: read below stack %p\n", s, *sp);
exit(1);
} else if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
wait(&xstatus);
if (xstatus == -1) // kernel killed child?
exit(0);
else
exit(xstatus);
}
// check that writes to text segment fault
void textwrite(char *s) {
int pid;
int xstatus;
pid = fork();
if (pid == 0) {
volatile int *addr = (int *)0;
*addr = 10;
exit(1);
} else if (pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
wait(&xstatus);
if (xstatus == -1) // kernel killed child?
exit(0);
else
exit(xstatus);
}
// regression test. copyin(), copyout(), and copyinstr() used to cast
// the virtual page address to uint, which (with certain wild system
// call arguments) resulted in a kernel page faults.
void *big = (void *)0xeaeb0b5b00002f5e;
void pgbug(char *s) {
char *argv[1];
argv[0] = 0;
exec(big, argv);
pipe(big);
exit(0);
}
// regression test. does the kernel panic if a process sbrk()s its
// size to be less than a page, or zero, or reduces the break by an
// amount too small to cause a page to be freed?
void sbrkbugs(char *s) {
int pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
}
if (pid == 0) {
int sz = (uint64)sbrk(0);
// free all user memory; there used to be a bug that
// would not adjust p->sz correctly in this case,
// causing exit() to panic.
sbrk(-sz);
// user page fault here.
exit(0);
}
wait(0);
pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
}
if (pid == 0) {
int sz = (uint64)sbrk(0);
// set the break to somewhere in the very first
// page; there used to be a bug that would incorrectly
// free the first page.
sbrk(-(sz - 3500));
exit(0);
}
wait(0);
pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
}
if (pid == 0) {
// set the break in the middle of a page.
sbrk((10 * 4096 + 2048) - (uint64)sbrk(0));
// reduce the break a bit, but not enough to
// cause a page to be freed. this used to cause
// a panic.
sbrk(-10);
exit(0);
}
wait(0);
exit(0);
}
// if process size was somewhat more than a page boundary, and then
// shrunk to be somewhat less than that page boundary, can the kernel
// still copyin() from addresses in the last page?
void sbrklast(char *s) {
uint64 top = (uint64)sbrk(0);
if ((top % 4096) != 0)
sbrk(4096 - (top % 4096));
sbrk(4096);
sbrk(10);
sbrk(-20);
top = (uint64)sbrk(0);
char *p = (char *)(top - 64);
p[0] = 'x';
p[1] = '\0';
int fd = open(p, O_RDWR | O_CREATE);
write(fd, p, 1);
close(fd);
fd = open(p, O_RDWR);
p[0] = '\0';
read(fd, p, 1);
if (p[0] != 'x')
exit(1);
}
// does sbrk handle signed int32 wrap-around with
// negative arguments?
void sbrk8000(char *s) {
sbrk(0x80000004);
volatile char *top = sbrk(0);
*(top - 1) = *(top - 1) + 1;
}
// regression test. test whether exec() leaks memory if one of the
// arguments is invalid. the test passes if the kernel doesn't panic.
void badarg(char *s) {
for (int i = 0; i < 50000; i++) {
char *argv[2];
argv[0] = (char *)0xffffffff;
argv[1] = 0;
exec("echo", argv);
}
exit(0);
}
struct test {
void (*f)(char *);
char *s;
} quicktests[] = {
{copyin, "copyin"},
{copyout, "copyout"},
{copyinstr1, "copyinstr1"},
{copyinstr2, "copyinstr2"},
{copyinstr3, "copyinstr3"},
{rwsbrk, "rwsbrk"},
{truncate1, "truncate1"},
{truncate2, "truncate2"},
{truncate3, "truncate3"},
{openiputtest, "openiput"},
{exitiputtest, "exitiput"},
{iputtest, "iput"},
{opentest, "opentest"},
{writetest, "writetest"},
{writebig, "writebig"},
{createtest, "createtest"},
{dirtest, "dirtest"},
{exectest, "exectest"},
{pipe1, "pipe1"},
{killstatus, "killstatus"},
{preempt, "preempt"},
{exitwait, "exitwait"},
{reparent, "reparent"},
{twochildren, "twochildren"},
{forkfork, "forkfork"},
{forkforkfork, "forkforkfork"},
{reparent2, "reparent2"},
{mem, "mem"},
{sharedfd, "sharedfd"},
{fourfiles, "fourfiles"},
{createdelete, "createdelete"},
{unlinkread, "unlinkread"},
{linktest, "linktest"},
{concreate, "concreate"},
{linkunlink, "linkunlink"},
{subdir, "subdir"},
{bigwrite, "bigwrite"},
{bigfile, "bigfile"},
{fourteen, "fourteen"},
{rmdot, "rmdot"},
{dirfile, "dirfile"},
{iref, "iref"},
{forktest, "forktest"},
{sbrkbasic, "sbrkbasic"},
{sbrkmuch, "sbrkmuch"},
{kernmem, "kernmem"},
{MAXVAplus, "MAXVAplus"},
{sbrkfail, "sbrkfail"},
{sbrkarg, "sbrkarg"},
{validatetest, "validatetest"},
{bsstest, "bsstest"},
{bigargtest, "bigargtest"},
{argptest, "argptest"},
{stacktest, "stacktest"},
{textwrite, "textwrite"},
{pgbug, "pgbug"},
{sbrkbugs, "sbrkbugs"},
{sbrklast, "sbrklast"},
{sbrk8000, "sbrk8000"},
{badarg, "badarg"},
{0, 0},
};
//
// Section with tests that take a fair bit of time
//
// directory that uses indirect blocks
void bigdir(char *s) {
enum { N = 500 };
int i, fd;
char name[10];
unlink("bd");
fd = open("bd", O_CREATE);
if (fd < 0) {
printf("%s: bigdir create failed\n", s);
exit(1);
}
close(fd);
for (i = 0; i < N; i++) {
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
if (link("bd", name) != 0) {
printf("%s: bigdir link(bd, %s) failed\n", s, name);
exit(1);
}
}
unlink("bd");
for (i = 0; i < N; i++) {
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
if (unlink(name) != 0) {
printf("%s: bigdir unlink failed", s);
exit(1);
}
}
}
// concurrent writes to try to provoke deadlock in the virtio disk
// driver.
void manywrites(char *s) {
int nchildren = 4;
int howmany = 30; // increase to look for deadlock
for (int ci = 0; ci < nchildren; ci++) {
int pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
}
if (pid == 0) {
char name[3];
name[0] = 'b';
name[1] = 'a' + ci;
name[2] = '\0';
unlink(name);
for (int iters = 0; iters < howmany; iters++) {
for (int i = 0; i < ci + 1; i++) {
int fd = open(name, O_CREATE | O_RDWR);
if (fd < 0) {
printf("%s: cannot create %s\n", s, name);
exit(1);
}
int sz = sizeof(buf);
int cc = write(fd, buf, sz);
if (cc != sz) {
printf("%s: write(%d) ret %d\n", s, sz, cc);
exit(1);
}
close(fd);
}
unlink(name);
}
unlink(name);
exit(0);
}
}
for (int ci = 0; ci < nchildren; ci++) {
int st = 0;
wait(&st);
if (st != 0)
exit(st);
}
exit(0);
}
// regression test. does write() with an invalid buffer pointer cause
// a block to be allocated for a file that is then not freed when the
// file is deleted? if the kernel has this bug, it will panic: balloc:
// out of blocks. assumed_free may need to be raised to be more than
// the number of free blocks. this test takes a long time.
void badwrite(char *s) {
int assumed_free = 600;
unlink("junk");
for (int i = 0; i < assumed_free; i++) {
int fd = open("junk", O_CREATE | O_WRONLY);
if (fd < 0) {
printf("open junk failed\n");
exit(1);
}
write(fd, (char *)0xffffffffffL, 1);
close(fd);
unlink("junk");
}
int fd = open("junk", O_CREATE | O_WRONLY);
if (fd < 0) {
printf("open junk failed\n");
exit(1);
}
if (write(fd, "x", 1) != 1) {
printf("write failed\n");
exit(1);
}
close(fd);
unlink("junk");
exit(0);
}
// test the exec() code that cleans up if it runs out
// of memory. it's really a test that such a condition
// doesn't cause a panic.
void execout(char *s) {
for (int avail = 0; avail < 15; avail++) {
int pid = fork();
if (pid < 0) {
printf("fork failed\n");
exit(1);
} else if (pid == 0) {
// allocate all of memory.
while (1) {
uint64 a = (uint64)sbrk(4096);
if (a == 0xffffffffffffffffLL)
break;
*(char *)(a + 4096 - 1) = 1;
}
// free a few pages, in order to let exec() make some
// progress.
for (int i = 0; i < avail; i++)
sbrk(-4096);
close(1);
char *args[] = {"echo", "x", 0};
exec("echo", args);
exit(0);
} else {
wait((int *)0);
}
}
exit(0);
}
// can the kernel tolerate running out of disk space?
void diskfull(char *s) {
int fi;
int done = 0;
unlink("diskfulldir");
for (fi = 0; done == 0; fi++) {
char name[32];
name[0] = 'b';
name[1] = 'i';
name[2] = 'g';
name[3] = '0' + fi;
name[4] = '\0';
unlink(name);
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
if (fd < 0) {
// oops, ran out of inodes before running out of blocks.
printf("%s: could not create file %s\n", s, name);
done = 1;
break;
}
for (int i = 0; i < MAXFILE; i++) {
char buf[BSIZE];
if (write(fd, buf, BSIZE) != BSIZE) {
done = 1;
close(fd);
break;
}
}
close(fd);
}
// now that there are no free blocks, test that dirlink()
// merely fails (doesn't panic) if it can't extend
// directory content. one of these file creations
// is expected to fail.
int nzz = 128;
for (int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
if (fd < 0)
break;
close(fd);
}
// this mkdir() is expected to fail.
if (mkdir("diskfulldir") == 0)
printf("%s: mkdir(diskfulldir) unexpectedly succeeded!\n");
unlink("diskfulldir");
for (int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
}
for (int i = 0; i < fi; i++) {
char name[32];
name[0] = 'b';
name[1] = 'i';
name[2] = 'g';
name[3] = '0' + i;
name[4] = '\0';
unlink(name);
}
}
void outofinodes(char *s) {
int nzz = 32 * 32;
for (int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
if (fd < 0) {
// failure is eventually expected.
break;
}
close(fd);
}
for (int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
}
}
struct test slowtests[] = {
{bigdir, "bigdir"},
{manywrites, "manywrites"},
{badwrite, "badwrite"},
{execout, "execout"},
{diskfull, "diskfull"},
{outofinodes, "outofinodes"},
{0, 0},
};
//
// drive tests
//
// run each test in its own process. run returns 1 if child's exit()
// indicates success.
int run(void f(char *), char *s) {
int pid;
int xstatus;
printf("test %s: ", s);
if ((pid = fork()) < 0) {
printf("runtest: fork error\n");
exit(1);
}
if (pid == 0) {
f(s);
exit(0);
} else {
wait(&xstatus);
if (xstatus != 0)
printf("FAILED\n");
else
printf("OK\n");
return xstatus == 0;
}
}
int runtests(struct test *tests, char *justone) {
for (struct test *t = tests; t->s != 0; t++) {
if ((justone == 0) || strcmp(t->s, justone) == 0) {
if (!run(t->f, t->s)) {
printf("SOME TESTS FAILED\n");
return 1;
}
}
}
return 0;
}
//
// use sbrk() to count how many free physical memory pages there are.
// touches the pages to force allocation.
// because out of memory with lazy allocation results in the process
// taking a fault and being killed, fork and report back.
//
int countfree() {
int fds[2];
if (pipe(fds) < 0) {
printf("pipe() failed in countfree()\n");
exit(1);
}
int pid = fork();
if (pid < 0) {
printf("fork failed in countfree()\n");
exit(1);
}
if (pid == 0) {
close(fds[0]);
while (1) {
uint64 a = (uint64)sbrk(4096);
if (a == 0xffffffffffffffff) {
break;
}
// modify the memory to make sure it's really allocated.
*(char *)(a + 4096 - 1) = 1;
// report back one more page.
if (write(fds[1], "x", 1) != 1) {
printf("write() failed in countfree()\n");
exit(1);
}
}
exit(0);
}
close(fds[1]);
int n = 0;
while (1) {
char c;
int cc = read(fds[0], &c, 1);
if (cc < 0) {
printf("read() failed in countfree()\n");
exit(1);
}
if (cc == 0)
break;
n += 1;
}
close(fds[0]);
wait((int *)0);
return n;
}
int drivetests(int quick, int continuous, char *justone) {
do {
printf("usertests starting\n");
int free0 = countfree();
int free1 = 0;
if (runtests(quicktests, justone)) {
if (continuous != 2) {
return 1;
}
}
if (!quick) {
if (justone == 0)
printf("usertests slow tests starting\n");
if (runtests(slowtests, justone)) {
if (continuous != 2) {
return 1;
}
}
}
if ((free1 = countfree()) < free0) {
printf("FAILED -- lost some free pages %d (out of %d)\n", free1,
free0);
if (continuous != 2) {
return 1;
}
}
} while (continuous);
return 0;
}
int main(int argc, char *argv[]) {
int continuous = 0;
int quick = 0;
char *justone = 0;
if (argc == 2 && strcmp(argv[1], "-q") == 0) {
quick = 1;
} else if (argc == 2 && strcmp(argv[1], "-c") == 0) {
continuous = 1;
} else if (argc == 2 && strcmp(argv[1], "-C") == 0) {
continuous = 2;
} else if (argc == 2 && argv[1][0] != '-') {
justone = argv[1];
} else if (argc > 1) {
printf("Usage: usertests [-c] [-C] [-q] [testname]\n");
exit(1);
}
if (drivetests(quick, continuous, justone)) {
exit(1);
}
printf("ALL TESTS PASSED\n");
exit(0);
}